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1. Objective

a) Overall objective is to acquire fundamental

understanding of a phenomenon characterized by violent

fluctuation of swirling flow, which is often found to

occur in various aircraft engine components. This flow
instability, dubbed here as "Vortex Whistle", is one of

the most subtle and treacherous flow-induced vibration

problems in gas turbines. In contrast to the other

well-known unsteady flow problems in turbomachinery such

as rotating stall, surge, aeroacoustic noise and flutter,

at present, little is known about this phenomenon --

despite its importance to the aircraft engine overall

structural integrity. The resultant vibration induced

by the "Vortex Whistle" can sometimes become so violent

that the bladings and the structural members of gas tur-

bines suffer serious damage. Perhaps for the reason

that the phenomena have appeared in seemingly unrelated

incidents concealed under various disguises, so far no

investigations appear to have been carried upon.

In the present effort, we will conduct a comprehen-

sive and systematic investigation into the "Vortex

Whistle" with its objective to offer a unifying explana-

tion for this least understood problem and to contribute

to assuring adequate design margins in order to alleviate

this severe flow-induced vibration problem encountered

in gas turbines. The entire program is comprised of

- il l-"I
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theoretical and experimental investigations. In Phase I,

covering the two-year period between April 1, 1978, and

March, 1980, a theoretical investigation has been conducted

and completed. Based upon this framework, we shall carry

out the experimental program in the second phase starting

April 1, 1980. In order to accelerate the pace of the

entire investigation, a part of the experimental investi-

gation corresponding to the second phase has been conducted

concurrently with Phase I.

b) The objectives of the first year; Phase I - 1,

(April 1, 1978 to March 31, 1979), the activity of which

was reported in the first annual report, were to lay out

the basic analytical formulation and from it to obtain the

preliminary theoretical explanation of the problem.

c) The objectives of the second year; Phase I - 2,

(April 1, 1979 to March 31, 1980), whose outcome is sum-

marized herein, are to refine the foregoing analysis and

resolve the several important issues raised in the first

year. Throughout the first and the second year, the theoreti-

cal effort has been focused on devising a flow model which

is simple enough to be amenable to analysis, but still cap-

tures the essential physics and exhibits the key feature

of the "Vortex Whistle" phenomenon.

In addition, based upon the results of the analysis,

the test apparatus has been designed, constructed and in-

stalled, the data acquisition therefrom comprising the

central part of the second phase activity.



2. Features of "Vortex Whistle" Phenomenon

"Vortex Whistle" has been known to occur in various

gas turbine components such as (a) a downstream section

of variable vanes followed by accelerating flow (b) an

inducer section of centrifugal compressors installed with

variable pre-swirl vanes and (c) turbine cooling air

cavity where the air enters through ports located on

rotating parts. The comon features of this unsteady flow

oscillation may be summarized as follows:

(a) The most unmistakable characteristics of "Vortex

Whistle" is that the frequency of fluctuation is

discrete and it becomes higher as the flow rate

increases.

(b) It is induced by high swirl flow: if the vane

angle is set in such a way as to produce less

swirl, whistle disappears.

(c) However, the role of vanes in connection with

the "Vortex Whistle" seems only to impart the

swirling motion to the fluid; in the place of

vanes, a single or several tangential injection

of flow produces the similar oscillation.

(d) The steady velocity distribution appears to

affect intimately the occurrence of the whistle.

For example, small change in duct configuration

or design change from free vortex to forced

vortex has sometimes succeeded in eliminating

the pulsation of flow.
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(e) The amplitude of oscillation often becomes

exceedingly large. Interestingly and curiously

enough, in such situations the steady flow

distribution in the radial direction -- both

velocity and temperature -- becomes markedly

altered. For instance, for swirl within a

coannular passage between outer and inner sur-

faces, the free vortex distribution of swirl

flow observed at points below certain threshold

swirl Mach number is found to be converted into

a shape somewhat similar to a forced vortex

above the threshold Mach number -- with reduced

swirl velocity near the inner surface. At the

same time, the steady total temperature distri-

bution in the radial direction exhibits the

temperature drop as much as 30°F at the core of

the vortex; this immediately presents its important

and intriguing implications related to Ranque-

Hilsch vortex cooling effect (e.g. Ref. 1).
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3. Significant Achievements to Date.

The following are the significant results accrued in

the second year's activity from April 1, 1979, to March 31,

1980.

(a) Analytical investigation

The problem posed is to study the characteristics

of disturbance-induced flow field within an annular passage

between concentric circular cylinders.

As reported in our first annual report, in the..

first year, linearized acoustic wave problem was analyzed

and the frequency-swirl relationship was obtained; the com-

patison with the available experimental data showed favorable

quantitative agreement with the experimental data and repro-

duced the trend stated in (a) of Section 2. In addition, the

expression of the steady streaming was derived using the

boundary layer approximation as a starting point; the result

predicted the existence of the reversal in the direction of

tangential streaming and based on this, we were able to

explain the observed deformation of steady profile, referred

to Section 2(e).

Although these results of the first year were

highly encouraging, the use of the boundary layer approxi-

mation as a starting point raised some questions on the

expression of the steady streaming thus derived. The reason

is that the streaming is obtained as a second order quantity

while the boundary layer approximation is the so-called,



first order approximation to the full Navier-Stokes

equations. Thus, for example, the effect of curvature

is neglected in the boundary layer approximation and we

have to confirm whether it influences the steady stream-

ing or not; the variation of viscosity due to temperature

fluctuation has been neflected in the first year's analysis

and this effect needs to be assessed.

To face these problems once and for all, in the

second year, we decided to use the Navier-Stokes equation

as the starting point of the refined analysis. By using

the apparatus of a matched asymptotic expansion, we derived

the expression of streaming anew.

In the main, this improved expression agrees es-

sentially with the first year's result based upon the

boundary layer approximations, the only major difference

being in the presence of the viscosity fluctuation in re-

sponse to temperature unsteadiness. Even this does not,

however, affect the values of the threshold swirl Mach

number. Thus, we are able to confirm the conclusions reach-

ed in our initial efforts, which we summarize next.

The streaming in the tangential direction suffers

a sudden reversal of its direction above the threshold swirl,

the physical reason being due to the Doppler shift caused

by swirl; and at the same time, the absolute magnitude of

acoustic streaming becomes considerably increased.

The specific value of swirl at the threshold depends

on the explicit relationship between the frequency and the
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prescribed radial distribution of tangential velocity.

For the steady free vortex distribution between co-annular

cylinders, which corresponds to the one referred to (e)

of Section 2, the threshold steady swirl is shown to

range from subsonic to supersonic tangential Mach number,

its specific values being dependent upon the ratio of the

outer to inner radius of the cylinder and the wave modes.

Below the threshold, the tangential streaming on the surface

of the inner cylinder is in the same direction as the steady

swirl; however, beyond this, the streaming abruptly reverses

its direction and starts to retrogress in the direction

opposite to steady swirl. Surely, then, this tends to

decrease the total d.c. component of circumferential velocity,

which is the sum of steady swirl with tangential streaming,

its reduction being sizeable near the threshold; close to

the inner cylinder, the radial profile is converted into one

not unlike a forced vortex. This behavior appears to be

consistent with the observation made in (e) of Section 2.

We also extended the analysis to include the steady

Rankine vortex distribution within a single pipe, which

corresponds to the so-called Ranque-Hilsch tube. There,

for the fundamental mode of disturbance, any amount of swirl

always makes the tangential streaming near the tube periphery

rotate in the same direction as the steady swirl itself; for

such a wave, no threshold swirl exists. Its magnitude be-

coming of considerable strength, the total d.c. component

of circumferental velocity in a free vortex region is in-



"8

creased and the entire Rankine vortex is now converted

into a forced vortex.

These conversions toward forced vortex type by

streaming tend to separate the flow, with the initially

uniform total temperature, into hotter air near the outer

radius and colder air near the inner radius or the center-

line -- this is the Ranque-Hilsch effect.

The details of the foregoing analysis carried

out as Phase I are written up in a paper entitled " Steady

Streaming in Swirling Flow and Separation of Energy" to

be submitted for publication.

(b) Experimental investigations

Based upon the effect of governing parameters

predicted in (a), a test rig has been designed in order

to correlate the analysis with experiments. The primary

consideration in the design was the establishment of a

well-defined swirling flow in a straight co-annular tube

of sufficient diameter to allow the insertion of probes

without causing a major disturbance of the flow; the ratio

of the radii of inner and outer tubes is to be varied over

a range Of parameters in order to make comparisons with

the trend predicted by analysis.

It was decided that the tube should be transpa-

rent to allow flow visualization studies and a three-

inch outer diameter plexiglass tube of 30 inches in length

was selected (Fig. 1). The manifold section, into which

the compressed air flows, is fabricated of transparent

.........



plastic. Eight nozzles of 3/8 inches diameter equally

spaced around the circumference of the tube and rounded

at their entrance, direct this compressed air tangentially

into the main co-annular rube. At the other end of the

30-inch long tube, a 600 cone-shaped valve is located to

regulate the amount of through flow.

:4t
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Figure 2. View of Vortex Whistle Test Rig with
Fixed Tangential Inlet.
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Six different inner tubes of varying radii are to be

used in order to investigate the effect of the outer/

inner radius ratio. The air entering the manifold is

fed through a specially constructed acoustic muffler.

The photo of the entire test arrangement is shown in

Fig. 2.

In addition to the manifold of fixed inlet

geometry described above, another manifold containing

variable guide vanes has been designed (Fig. 3); the

latter is interchangeable with the former, provides the

variation in swirl/axial velocity ratio, and the bulk

of data is planned to be taken with this manifold. The

variable guide vanes consist of 24 streamlined airfoils,

placed symmetrically in a circular array around the side

plate of the manifold. The vane angles can be set at any

desired value between zero (purely radial flow) and 65

degrees, by rotating a circular ring which contains 24

small pivots fitted into slots provided in airfoils. The

photo of this variable vane manifold is shown in Figure

4.

Currently check-out tests of ths test rig are

being carried out.
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Figure 4. View of Variable Guide Vane Manifold.
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4. Implications of Conclusions Obtained During

Phase I Effort as Related to Aircraft Gas Turbines

Once confirmed by further investigations to be

carried out in Phase II, the implications of these

conclusions obtained from Phase I program, as related to

the aircraft engine technology are twofold:

(a) By explicit recognition of the dependence

of vortex whistle upon the governing

parameters as found in the present in-

vestigation, it appears possible to

avoid the catastrophic structural

failure by de-tuning the natural fre-

quency of various engine components

from this discrete frequency.

(b) The existence of transition from free

vortex to non-free vortex type above

certain critical swirl Mach number

implies that in the steady aerodynamic

design of rotors/stators, a due considera-

tion may have to be given to this

acoustic streaming.
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5. Written Publications

"Steady Streaming in Swirling Flow and Separation

of Energy" (attached as Appendix and to be submitted

for publication).

4" -.-
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6. Future Plans

(a) For remainder of present contrant (Phase II,

April 1, 1980 to September 30, 1981).

The phase II program will be comprised of (1)

detailed data acquisition of 'Vortex Whistle' by utilizing

the testing designed and constructed during Phase I, as

described in Section 3(b) and, (2) concurrent continuation

and refinement of analysis, if necessary.

The experimental program will be initiated first

by installing the manifold of fixed geometry type and the

measurement of steady temperature and pressure distribution

will be carried out in the test configuration where the

inner tube will be removed. The compressed air with the

inlet pressure of 10, 15 and 20 psig will be directed into

the manifold and flow field traverse will be made. The

objective of this test run is to check out the rig and

instrumentation by making comparison with the well-documented

data taken in a similar set-up. Upon completion of this,

the manifold will be replaced by the alternative one with

variable guide vanes; this will allow one to vary the ratio

of swirl velocity to axial velocity. After checking the

uniformity of the incoming flow by means of flow visualiza-

tion, we measure the variation of steady velocity and tem-

perature profile as the swirl Mach number is increased;

particular attention will be focused upon the data acquisi-

tion near the critical swirl Mach number. In conjunction

A
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with this, unsteady flow measurement will be carrued out

to define the acoustic characteristics of the vortex

whistle; both the microphones placed externally and the

miniature kulites mounted flush with the internal surface

of the outer tube will be used for this. Among the

acoustic signatures to be measured and analyzed are fre-

quency of vortex whistle, its intensity and rotating pat-

terns of sound. In the event where the level of its inten-

sity in the test rig were not sufficiently high, it would

be amplified by a speaker, which will provide an additional

source of excitement. Based upon the measured frequency,

an acoustic suppressor will be designed and installed on

the test rig and the effect of sound suppression upon the

steady flow profile near the critical Mach number will be

investLgated. As an added related effort, the similar

effect upon the Ranque-Hilsch tube will be examined by

installment of an acoustic suppressor on the commercially

available vortex tube, which has been already procured in

the Phase I period. With regard to the analysis, we make

comparisons of the data with the preliminary analysis

carried out in Phase I and, if necessary, modify it.

(b) Next increment

In the foregoing phases; the outer and inner

cylinders simulating the outer and inner casing of the

gas turbine are held stationary. For the actual aircraft

engine turbomachinery, the inner casing is rotating, of

course. This rotational effect is considered to be im-
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portant in the present study of streaming, affecting

the frequency parameter. Thus in the next increment

of the contract, the investigation of this effect will

be proposed.

... . .. ... ~........ P- -" .. . . ." . . ."'.. .........
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ABSTRACT

This paper concerns the steady streaming induced by

unsteady disturbances in a swirling flow contained

within concentric circular cylinders or a single tube.

The investigation is motivated, in the first place, by

a newly observed phenomenon, which reveals that the

acoustic streaming is accountable for the deformation

of base, steady swirl profile, leading to the radial

separation of total temperature (the Ranque-Hilsch

effect). This, in turn, offers a clue into the hithet-

to unheeded mechanism of the Ranque-Hilsch effect itself.

Starting from the full, compressible, unsteady Navier-

Stokes equations, the acoustic streaming is studied by

the method of matched asymptotic expansions; based on

the results, experimental observations are explained.



1. Introduction

1.1 Background

The subject of acoustic streaming owes its origin

to Lord Rayleigh's landmark memoir (1884); led by Faraday's

observation (1831) and the patterns in the Kundt tube, he showed

that sound waves can and do generate steady current through

the very action of Reynolds stresses, which are induced near

the solid boundary by the periodic disturbances themselves.

For the modern review of the subject in general, we refer

to the recent expository lecture by Lighthill (1978-a).

Not only can we demonstrate the acoustic streaming

in assorted laboratory experiments using a vibrating dia-

phragm, cylinder and the like, but it has been suggested as

a possible explanation ranging from the roll torque effects

of rocket motors in flight (Swithenbank and Sotter 1964;

Flandro 1964, 1967) to the blood flow phenomena in the

coronary arteries (Secomb 1978).

Of late, a striking acoustic streaming phenomenon,

with its features alien to others, revealed itself unexpect-

edly in a swirling flow experiment (Danforth 1977; Rakowski,

Ellis and Bankhead 1978; Rakowski and Ellis 1978), display-

ing a grossly deformed pattern of steady flow and temperature.

And, at the same time, it afforded a glimpse into the dimly

foreseen mechanism of energy separation -- the Ranque-Hilsch

effects. Although the phenomenon wag detected in a test
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rig called an annular cascade simulating flow in aircraft

engines and, as a matter of fact, cropped up in the check-

out tests as an undesirable side-effect to be eliminated

later, its undeniable significance -- in divulging the clues

to connect the acoustic streaming with thermal effects--

appears to transcend beyond the special interest of turbo-

machinery technology and merit wider scientific attention.

Here we outline its layout briefly. The annular cas-

cade was conceived with the objective to investigate some

aero-elastic aspects of compressor bladings in a non-rotat-

ing environment. As a whole, it is in the shape of a

stationary, annular conduit formed between inner and outer

casings: first, air enters the vehicle, axially and uniformly,

and is immediately imparted a tangential motion by passing

through variable swirl vanes, the adjustment of whose angle

induces the change in swirl; then,it flows spiralling aft,

through the transition piece, to the test section where an

array of removable test airfoils are normally mounted on outer

casings in the circumferential direction and in a cascade

arrangement; and finally, upon being realigned in the axial

direction by deswirl vanes, the air exhausts to the exit.

During the check-out test of the vehicle, the pres-

ence of loudly audible, unsteady-flow was immediately un-

covered. The disturbance became manifest beyond certain

conditions called an acoustic boundary. It was organized,

, .- , . .. . -. .
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periodic, and spinning circumferentially with the first

tangential mode; the amplitude of total pressure exceeded

20% of steady state levels, an intense fluctuation indeed.

Its fundamental frequency was in the range of 300 to 400

Hz, aerodynamically ordered and, in fact, was found to

increase almost proportionally to the swirl, a point to

be made here and recalled later. As the swirl was increased,

several higher harmonics were found to accompany this funda-

mental frequency. The measurements were taken without test

airfoils installed in the test section. Hence,nothing lay

in the way of the flow path between the upstream swirl vanes

and the downstream deswirl vanes. Before we go further, we

can not too strongly emphasize the fact that, despite its

aim, all the components of the annular cascade are not rotat-

ing, but stationary.

Among the other effects of this vigorous pulsation in

swirling flow, the phenomenon that arouses our attention is the

unexpected change of steady-state or time-average components

of the flow field,or its'd.c.'parts. When the swirl was small

and outside of the acoustic boundary, the steady-state tan-

gential velocity distribution in the radial. direction was in

the form of a free vortex, with the obvious exception of thin

boundary layers found near the inner and outer surfaces; the

steady-state total temperature was uniform. The former was

what had precisely been intended in the design, the latter

as expected. However, when the swirl was increased beyond



the acoustic boundary, then above a .certain swirl, the tan-

gential velocity near the inner wall became abruptly re-

duced to a considerable extent, the radial profile trans-

figured from a free vortex into one somewhat akin to a

forced vortex; what is equally surprising is that the

total temperature, initially uniform at the inlet and

equal to 97 0F, spontaneously separated into hotter stream

of about 118°F near the outer wall and colder one of 83°F

near the inner wall, with the difference as distinct as

35°F! This latter reminds us of none other than the Ranque-

Hilsch effect.

Faced with the severity of dynamic flow field,

which posed a serious threat to the subsequent use of the

rig for flutter testing of airfoils, the annular cascade

was modified and both inner and outer walls were provided

with tuned acoustic absorber. And this did remove

the unacceptable dynamic flow disturbances. Ever since,

the vehicle has successfully been in use for aeroelastic

purposes, the details of which are, however, outside of our

present interest.

Instead, we focus our capital concern to what

happens to the profiles of steady flow, now that the un-

steady fluctuation has been eliminated. The answer: the

change in the velocity and temperature distribution has

vanished. The free vortex remains so throughout even above
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the swirl, where, before the suppression of organized

disturbance, it has been converted into a forced vortex

type; the total temperature remains uniform in the radial

direction throughout -- the Ranque-Hilsch effect is gone.
.

Beyond doubt the acoustic streaming did somehow

deform the steady flow field, both in velocity and tem-

perature, and this affords an unmistakably obvious clue

into the mechanism of little understood Ranque- Hilsch

effects, which we shall discuss in some detail below.

We recall that in the Ranque-Hilsch tube (Ranque

1933; Hilsch 1947), the compressed air enters near one

end of a single straight tube through one or several

tangential injection nozzles. Then,once within the tube,

the swirling air segregates by. itself into two streams of

different total temperature: the hotter air near the

periphery of the tube and the colder one at the centerline,

a separation effect already mentioned with regard to the

annular cascade. Between the Ranque-Hilsch tube and the

annular cascade, the visible difference in the internal

flow passage is that the former is made of a single tube,

* We eliminate the possibility of vortex breakdown (e.g.

Hall 1972) on the following grounds. First, the breakdown

is essentially a steady phenomenon; the one described here

was unsteady. Second, the measurement in the annular cascade

did not exhibit any reversal of flow in the axial direction.

4
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the latter of an annulus (this will turn out to be a not so

trifling dissimilarity as it might seem now). As a matter

of further detail, in the conventional Ranque-Hilsch tube

the cold air is immediately extracted from an orifice

located on one end,near the inlet nozzleand the hot air

spiralling downstream escapes from the other end where a

throttling exhaust valve is located this is the so-called

counter-flow type. Even by closing the cold orifice, the

air flowing only in one direction toward the exhaust valve

can still produce the radial separation; this is called

uni-flow type.

Detailed measurements of the internal flow distri-

bution in the Ranque-Hilsch tube taken at the condition of

optimam cooling,show that, in every instance a forced vor-

tex type is formed immediately near the entrance to the

tube , even at a location as practically close as possible

to the inlet nozzle (for uni-flowtype, Eckert and Hartnett,

1955, Hartnett and Eckert 1957, Lay 1959; for uni-flow type

with vortex chamber, Savino and Ragsdale 1961; for counter-

flow type Scheller and Brown 1957, Sibulkin 1962, Takahama

1965, Bruun 1969). The forced vortex occupies the almost

entire cross section (except in the reighborhood of the

boundary layer on the tube periphery, of course) and

remains so from the entrance to the exit. Mark with atten-

tion that at this condition any vestige of what may be char-

acterized as a free vortex type has nowhere been detected. Also

..... ...



right at the entry, the radial separation of total

temperature occurs. Contrary to some earlier belief, the

maximum tangential velocity near the periphery of tubes

needs not to be svpersonic to create the effect, even the

speed of 500 ft/sec or so suffices.

Although the actual total temperature separation

in Ranque-Hilsch tubes is beyond all question, none of the

theoretical explanations devised so far appear to have

found unreserved acceptance. Take, for example, the tur-

bulent migration theory (Van Deemter 1952; Deissler and

Perlmutter 1960; Linderstrom-' - 1971). This rests

upon the assumption that when a lump of fluid migrates

radially by turbulent motion, it tends to separate the

total temperature by the combination of the following

two separate mechanisms of stochastic origin: (1) formation

of a forced vortex and (2) creation of a static temperature dis-

tribution approaching an adiabatic one, the latter through the

heat transfer process in a centrifugal field originally

postulated by Knoernschild (1948). However, confrontation

with the experimental evidence already available in the

literature reveals, that the contention of turbulence as

a dominant catalytic agent for the Ranque-Hilsch effect appears

to suffer from a serious flaw.-

Let us turn our attention temporarily away from

the Ranque-Hilsch tube proper, and inspect the measurements

• !

_ _-.4. 1
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in apparatus with the tangential injection identical

to the one for the Ranque-Hilsch tube, but constructed

instead to create a vortex for purposes other than

energy separation (Ter Linden, 1949, f..r cyclone separa-

tor; Keyes 1961, for containment of fission material;

Tsai 1964, for plasma jet generator; Gyarmathy 1969,

for von Ohain swirl chamber; Batson &Sforzini 1970, for

swirl in solid propellant rocket motors.) There, unmis-

takable free vortex type prevails at the entrance and

elsewhere, with the obvious exception of the innermost

core near the tube's centerline; the total temperature

at the entrance remains virtually uniform* in the radial

direction and equal to the inlet total temperature (Batson&

To be more precise, Batson& Sforzini's data shows that the

total temperature is uniform from the periphery of the

tube to the boundary of the inner core, which occupies

about 10% of tube radius from the centerline.(In the core,

the tangential velocity distribution is of a forced vortex

type and the total temperature dips slightly.) Under

conditions fulfilled in their experiments., this is theoreti-

cally-consistent with Mack's results (1960) where he has

shown that even for viscous, heat-conducting flow, the total

temperature of a free vortex remains virtually uniform (and

exactly so for the Prandtl number of 0.5) provided the

swirl Mach number is less than one.



Sforzini, ibid.) Even in these test rigs, the turbulence

level would be more or less the same as for the Ranque-

Hilsch tube. Contrast this with the sudden formation of a

forced vortex and the separation of total temperature right

at the entrance of the Ranque-Hilsch tube. If turbulence

is the primary agent at work, then under circumstances not

unlike each other, why, in the particular case of the

Ranque-Hilsch tube, can it eradicate any traces of a free

vortex and suddenly separate total temperature, while in

the others it can 'still preserve a predominantly free vortex

and virtually uniform total temperature?

This dichotonomous branching has been left un-

explained by the turbulent migration theory. Although the

space does not permit us to dwell on the details of other

theories (Schepper 1951; Sibulkin ibid.), they do not

appear to be free of similar serious objections.

The experimental evidence mentioned in the open-

ing of this section on the annular cascade compells us to

turn toward acoustic streaming as the more dominant cause

of the Ranque-Hilsch effect -- the acoustic streaming in-

duced through the Reynolds stresses which are caused by

organized periodic disturbances rather than by stochastic

motion.

Close scrutiny of the available past literature on

the Ranque-Hilsch tube reveals, surely, the allusion to the
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presence of an intense periodic disturbance observed by many

experimenters. Hilsch(ibid.) himself mentions that a

boiling sound was audible if the exhaust valvewas set at

optimum position for cooling. McGee (1950), Savino and

Ragsdale (ibid.), Ragsdale (1961),Kendall (1962, for a

vortex chamber), and Syred and Beer (1972) recount in

one way or the other, the disturbance of pure tone type,

whistle or scream. In fact, Savino and Ragsdale record

an incident where a loud screaming noise was accompanied by

100 - 200F change in total temperature, a phenomenon

where the experience of the annular cascade leaps immediately

to mind. None of them, however, proceeded beyond the stage

of giving passing observations to it.

To a certain extent, the work of Sprenger (1951)

foreshadows our premises in its spirit. In the Ranque-Hilsch tube

with its hot end closed and only its cold end open, he measured

periodic disturbance by spreading Lycopodium to form a

Kundt pattern! However, the pattern was apparently used to

measure only the wave length of discrete disturbances, since

he did *not pin the Ranque-Hilsch effect down to the acoustic

streaming. Rather, by appealing to the analogy of

Reynolds (1961), while advocating the turbulence migratioh

theory, refers Sprenger's idea as due originally to Ackeret

without citing the reference: to date, we have been unable

to locate the original source.

.



the resonance tube (e.g. Hartmann 1931), he later simply

suggested (1954) that the organized unsteadiness might

produce the energy separation.

Highly suggestive also were the circumstances

which led to the discovery of vortex whistle by Vonnegut

(1954). While engaged in experiments exploring the

application of the Ranque-Hilsch cooling effect (as a

possible means of measuring the true static temperature

of air from aircraft in flight), Vonnegut (1950) observed

the presence of a pure tone noise. Although he did not

connect it with a mechanism of the Ranque-Hilsh effect,

from this hint he constructed a musical instrument, the so-

called vortex whistle, where air, injected tangentially into

a cylinder of larger diameter, swirls into a smaller tube;

the sound thus emitted is found to have a discrete frequency,

which is proportional to flow rate. Recall, now, that the
,

frequency of the pure tone noise in the similar, swirling

flow within the annular cascade was also proportional to the

Mach number.

Strickly speaking, finer distinction has to be drawn between

the two frequency-swirl relationships, as will be made clear

in Section 7.

~ - -.



12

1.2 Outline of Present Investigations

Against the precedent setting, we shall, in the

present paper, pose the following model problem: periodic

disturbances in swirling flows within straight co-annular

cylinders or a single tube. We shall solve it by deriving

an explicit expression for its acoustic streaming; then,we

shall seek to display such key features as the transfigura-

tion of steady swirl from one type to another at certain

threshold steady swirl; and we shall attempt to explain

the Ranque-Hilsch effect on the basis of streaming caused

by Reynolds stresses due to organized periodic disturbances.

Acoustic streaming is, of course, an induced

steady or d.c. component, and as such we have to distinguish

it sharply from the base, steady flow initially imposed before

the disturbances are set up. For brevity, we shall, here

and henceforth, refer to the latter simply as steady flow

and its sum with the former as the total d.c. component.

Now, without a single exception, the only known

analytical method to obtain streaming, the present one not

excepted, is to resort to the use of a perturbation scheme

and take a temporal average of the second-order equation,

which contains products of the first order quantities. Thus,

if we started from the conventional boundary layer equations,

which corresponds of course to the first order approximation

to the full Navier-Stokes equations, we would be asked as to

the effects of what are collectively called the higher-order

approximation to boundary layer theory (e.g. Van Dyke
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1969) on the streaming. In this very connection, upon

treating the problem of streaming around an oscillating

cylinder, Stuart (1966) justly voiced a note of caution

on the possible effect of curvature, which could be of

the same second order as the streaming itself. (For

this particular effect, in his definitive work on stream-

ing for incompressible flow otherwise in a state of rest,

Riley (1967) shows conclusively from a matched asymptotic

expansion that, as far as the leading term of the

streaming is concerned, the curvature has no influence

within the unsteady boundary layer.) In the present case

we are besieged with more than a single effect of possible

second-order correction. For example, both steady and

unsteady boundary layers formed over the cylindrical sur-

faces present the problem of a steady as well as an unsteady

displacement thickness; the fluctuation of temperature gives

rise to changes in the viscosity, which, coupled with tem-

poral variation in strain, might beget additional Reynolds

stresses, as will be found to be indeed the case; the flow

being compressible, even the effect of the second coefficient

of viscosity must be assessed, as has, in fact, been done

by Van Dyke (1962-a)for steady compressible boundary layers

To face these problems once and for all, we shall

abandon the standard boundary layer equations and start

4

.. . . .... .. ..... ,- -
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afresh with the full, compressible and unsteady Navier-

Stokes equations, retaining even the second coefficient

of viscosity. Under the conditions of several parameters

to be small, we shall use the matched asymptotic expan-

sions to ferret out the leading term of the acoustic

streaming in swirling flow within co-annular cylinders;

by following this avenue of plunging into the equation

in its full generality, we can not avoid somewhat elabo-

rate alegbra, which constitutes Section 3 through 6.

One of our centerpiece results is equation (42),

which expresses the acoustic streaming in the circum-

ferential direction near the cylindrical surfaces. This

will explicitly show the following: it suffers a sudden

reversal of its direction above a threshold steady swirl,

the physical reason being due to the Doppler shift caused

by swirl; and this holds regardless of the values of the stream-
ing Reynolds number. At the same time, the absolute mag-

nitude of acoustic streaming itself becomes considerably

increased.

The specific value of swirl at the threshold

depends on the explicit relationship between the frequency

and the prescribed radial distribution of tangential velocity.

4
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The derivation of the latter relation will be found in

its entirety in the Appendix. With the aid of this,

we shall be in a position to discuss the behavior around

the threshold in Section 7.

For the steady free vortex distribution between co-

annular cylinders, which corresponds to the one for the

annular cascade, the threshold steady swirl will be

shown to range from subsonic to supersonic tangen-

tial Mach number, its specific values being strongly dependent

upon the ratio of outer to inner radius of the cylinder

and the wave modes. Below the threshold, the tangential

streaming on the surface of the inner cylinder is in

the same direction as the steady swirl; however, beyond

this,the streaming abruptly reverses its direction and

starts to retrogress in the direction opposite to steady

swirl. Surely, then, this tends to decrease the total d.c.

component of circumferential velocity; its reduction being

sizeable near the threshold, close to the inner cylinder

the radial profile is converted into one not unlike a

forced vortex. This behavior appears to be consistent

with the observation made about the annular cascade in

1.1.

We turn now to the steady Rankine vortex dis-

tribution within a single pipe, which corresponds to the
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Ranque-Hilsch tube. There, for the fundamental mode

of disturbance, any amount of swirl always makes the

tangential streaming near the tube periphery rotate

in the same direction as the steady swirl itself; for

such a wave, no threshold swirl exists. Its magnitude

becoming of considerable strength, the total d.c. component of

circumferential velocity in a free vortex region is increased and the

entire Rankine vortex is now converted into a forced

vortex;if such a fundamental mode of disturbance is not

sufficiently excited,the Rankine vortex remains vir-

tually unaffected. ( In all these, if the calculated

streaming becomes of considerable magnitude, obviously

the small disturbance approximations break down. We

assert, however, that as usual this does, at the very

least, indicate what is to be expected in real situa-

tions). In the light of our discussion in 1.1, this seems

to explain the appearance of swirl either in the form of

a forced vortex preferred for the Ranque-Hilsch tube or

of a Rankine vortex for others. In agreement with this

also is the following observation of Takahama and Soga

(1966) made in a Ranque-Hilsch tube: while, at the

optimu'm position of the exhaust valve, the forced vortex

is found, in the same tube with the exhaust valve now at off-

optimum position, one indeed finds a well-defined Rankine

vortex.

7j
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Whatever the initial study swirl distribution

may be, this feature they both have in common: the con-

version toward forced vortex type by streaming -- and

this tends to separate the flow, with the initially uniform

total temperature, into hotter air near the outer radius and

colder air near either the inner radius or the centerline;

this is indeed the Ranque-Hilsch effect.

Details of the physical discussion we summarize

in Section 8.

I:

I!
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2. Statement of Problem

We pose the problem of obtaining the acoustic

streaming in an annular duct between two circular cylin-

ders, straight and stationery, as sketched in Figure 1: r

denotes the radius of the outer cylinder, r i of the inner cylinder.

The fluid is conpressible and taken as a perfect gas.

We assume that, throughout the entire duct length, L,

of our interest, the steady boundary layers formed over

the cylindrical surfaces are thin; in the inviscid annular

region bounded by and outside of them, both the cir-

cumferential and axial velocity are the predominant

components of steady flow, as shown in Figure 1. Super-

imposed upon this steady flow are the fully three-dimen-

sional unsteady excitations, whose forms are to be

specified in the inviscid annular region and whose

streaming effects we are interested in.

Before decomposing into steady and unsteady parts,

we begin by writing out unsteady, compressible Navier-

Stokes equations in cylindrical coordinates (r, ,z) with

corresponding velocity q = (u, v, w):

Dp 1 (rp I a(pv) (pw) (1-a)2- + + -T-- + - = o1,

3(pu) 13 2 i 3 v
a(-u) + a (ru) + (pvV) + - (puw) -PV

at~~~- r4r ra
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+ 2 + + u ar-ar a-r-- r r-' ao a- r - l

+ a u + -!W + 1 a+ az r ar r a r

+ a o V q), (1-b)

a (v) + a (rpuv) +I __ (p v 2) (v)uv
r ar

a+ arr ar r -a r

+ (v + -1(7 Vw)-M

+ a w + + 1 f !. au + v + o (2) q) ,az [Pi( r az) r r~ ar r)/ r ao

(1-c)

_ + (ruw) + (Pvw) (Pw2 )
t r (u + + "" z

=-~f- +i~. [jr(~& ~ [(1aw + avlaz ra8r \az ar/ ra~ura 7

az - - + V q). (1-d)

p DC D

r 'f r F +  " 6 +r 3r 3r -2 ae a
I r a) z z )l
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+ 12[ au)2av 2  q )2](1 aw + )
+rrD r-)+ ~ /J r Do /

+ 1 + a + au + r"
az ~ ) (rr o Br V. q)

(1-e)

p =Cp Y- P (f)

,= () ,(2) = V(2O) .(l-g)

a I i+ v +
where V q = (ru) + - - az

D- a=  +  - +  W -
Dt at ar r D a

(2) denotes the second coefficient of viscosity, the one

that vanishes for a monatomic gas, v the coefficient of

viscosity, Pr the Prandtl number, 0 temperature, the rest of

the notation being standard. The inertia terms of the momentum

equations are rendered in the above form in order to ease the

subsequent streaming calculations. In the energy equation,

both the specific heat, cp, and Pr are taken, as usual, to

be constant; equation (l-g) simply states the viscosity

law.

The boundary condition on the cylindrical surfaces is
4

q = 0. The thermal condition depends, in general, on the

details of the unsteady heat transfer through the walls. For

I,.
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simplicity, we assume that either the wall temperature

is maintained to be constant, its unsteady part being

kept to be equal to zero, or the walls are insulated.

(Dunn and Lin (1955) have shown that the former corres-

ponds to the situation where the thermal inertia of the

wall prevents the surface temperature from responding

to high frequency fluctuation, as to be expected.)

I,

[
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3. Preliminary Considerations

We now decompose the flow field into the steady part and

the one related to unsteady disturbance such as

q Q + q', (2-a)

where Q = (U, V, W) and q = (u, v', w');. likewise

P = P + p, (2-b)

. = R + p, (2-c)

0 = o+ 0. (2-d)

P'= M +h, (2-e)

(2)= M(2 ) + ,'(2), (2-f)

Henceforth, primes denotes unsteady disturbances, which contain both

a.c. and d.c. components, the latter being streaming in-

duced by the former.- In an effort to seek a tractable

ingress to the problem, we assume disturbances to be

organized, regular and endowed with the fundamental frequency

w, the stochastic part of it being neglected in comparison,

in accordance with the discussions of Section 1.1. Of our

central interest is the effect of upon the streaming.

Henceforth, it is convenient to render r, z, and t

dimensionless, by referring length to ri and time to w, they

being denoted as starred quantities; i.e. r* = r/ri, z*

z/ri, and t* = wt. We also define the ratio of the outer

I,
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cylinder radius to that of the inner cylinder

rori

The next subsection concerns some preliminary con-

sideration on the steady flow, followed by the one on

the unsteady disturbance.
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3.1 Base, Steady Flow

We assume that the steady flow is axisymmetric

and apply the standard outer and inner expansion (Van

Dyke, 1962 a and b) in powersof Re -1/2 where Re is the

Reynolds number, whose choice of characteristic values

is left unspecified at this point. We first examine

the leading terms, denoted by subscript 0,in the follow-

ing outer expansions:

Q = Q0 + Re-1 /2 Q1 +---, (4-a)

P = P0 + R e-1/2P +--- (4-b)

R = R0 + Re- 
1 /2R +--- (4-c)

0 -/201- (4-d)

M = M0 + Re-1 /2 M1 +--, (4-e)

M(2) = (2) + Re-1/ 2M (2)+___, (4-f)

4.

where Q0 = (U0, V01 W0 ), Q1 = (Ul, Vl, Wl), etc. As usual,

matching yields U0 = 0 on the walls and henceforth we are

interested in the case where

u = 0 (5)

at any values of r*standing for the outer variable. All the

leading terms or "inviscid" flow are taken to be independent

of z*(as well as 4), in view of the assumption of thin

boundary layers stated in Section 2; they are all functions

of r*only, and may be written out explicitly'as

....I
., '
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V0  = V0 (r*), (5-b)

WO = W0 (r*), (5-c)

P0 = P0 (5-d)

R0  R 0  (5-e)

0 = e 0 (r*), (5-f)

etc. Then the only nontrivial equation among equation (1)

is the following,

1 2 dP0
r * , (6)

which expresses the radial equilibrium of r-component of

momentum. As is well known in the theory of turbomachines

(e.g. Marble 1964, p. 144), if the corresponding stagnation

enthalpy be uniform in the radial direction, and further-

more if and only if V0 (r*)be of free vortex type, W0 remains

uniform in the radial direction; for other steady tangential

velocity distribution, W0 varies in the radial distribution

even for uniform stagnation enthalpy.

If we assume that the corresponding entropy remains

constant everywhere,then

P0
- - constant, (7-a)

or equivalently

O DPo
CPRO - . --,. 0 (7-b)
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Finally the radial dependence of the inviscid acoustic

speed, defined as c p(y- 1) 20 AO, is given by

[A0 (r*)2 [A0  2_ (y- l)f*[V0]2 dr*, (8)

where A0 (x*= X) denotes acoustic speed at the periphery

of the outer wall in the co-annular duct.

The leading terms of the inner expansion, con-

stitutes, of course, the conventional, compressible steady

boundary layer equations (the second coefficient of

viscosity does not show itself until the third order

(Van Dyke 1962 a)). On both cylindrical surfaces, the

boundary layers are rotationally symmetric and develop

in the z direction. Their structures being complicated

by the presence of two components of inviscid stream,

swirl and axial flow, one would certainly have to rest

content to derive them by such methods as adopted, for

example, by Taylor (1950) for a swirl atomizer problem

or the like. However, as will be shown later, in so far

as we limit out attention to the leading term of acoustic

streaming under the conditions where Re is large

and the steady swirl not far from its threshold value,

the case of our deepest interest, the details of the

steady boundary layer need not be worked out.

---
a
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3.2 Linearized, Inviscid Waves

We now turn to q of equation (2-a) and the

other similar unsteady disturbances, upon which our

emphasis lies.

Before ushering in the more precise formalism

of the asymptotic expansion, we pave the way for it by

considering, in less stringent manner, the linearized

inviscid disturbances. By the usual small perturbation

of equation (1) around the inviscid steady flows of

Section 3.1 and tentatively setting

u"=u(r*) ei (m +  kriz*- t*) (9-a)

= (r*)ei(m + kriz*- t*) (9-b)

= w(r*)ei(m + kriz*- , (9-c)

and the like, we obtain immediately

1 imif- + 1 d.(r*RuO+) + + ikriR 0w =0,
i* E, r*Rov(10-a)

1 - dP0

ifu- V0v 0  dr* + -  dPO (10-b)

1 d (r.V U im
ifV + R- r) = -- - p, (10-c)

dW0  _ ikr. -if w + -. u = R0 p, (10-d)
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(Y-l) 0, (10-e)

(e C Y + R e), (10-f)

with the boundary condition

u = 0 at r*= 1 and r*= , (10-g)

where

f(r*)= -+ V0  m+ kW ri. (10-h)

In the above, the quantities with the subscript 0 again

stand for the ones of steady inviscid flow, all being

functions of r*only; in deriving (10-b), the radial

equilibrium relation of equation (6) has been taken into

account. These set of equations are idential to the ones

studies by Kerrebrock (1977).

By inspection of the above, we realize at once

that the real parts of u' and of all the rest oscillate

with a phase difference equal to -- -- a fact first exploited

by Lord Kelvin (1880) for his analysis of incompressible

flow; we will use this later for the present compressible

flow alike.

Of crucial importance among the foregoing equa-

tions is the fact that frequency w does not appear by

itself, but arises in the exclusive form of (10-h). That

Name
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is,

f(r*)= + m V (r*)+ k Wo(r*l r"r* 0

where m and k are wave numbers in the circumferential

and axial direction, respectively; obviously this

embodies the Doppler shift caused by the steady inviscid

swirl VO, and the axial velocity W0 . Notice that the

shift is dependent upon the radial position r*.

In order to obtain the acoustic streaming,

these linear disturbances are, of course, to be enforced,

as the external excitation,upon the viscous flow near

the walls; therefore, in forming parameters containing

the frequency, the relevant frequency to be used there-

in is not bare w, but the above f, in which form it has

recommended itself.

With regard to the above set of equations

themselves, together with the boundary condition equation

(lO-g), they determine the relationship between the

frequency parameter f and the steady flow field, wave

numbers and outer and inner tube radii; upon obtaining

the acoustic streaming, we shall later need such explicit

formulae. For now, instead, we proceed directly to obtain

the viscous response near the solid walls, relegating

derivation of frequency relationship to the Appendix.

1 M G M M . ,, - . . -- - ,.. . . . . . . ... . . . . •.. . . . . •.. . .. . . .. . - , n I . ..
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4. Construction of Expansion Series and Matching

For both inner and outer cylindrical surfaces, an

analysis can be carried out in the same way. To

render it concrete, we choose here, as henceforth,

the one near the inner cylinder located at r*= 1,

the other one corresponding to the outer surface

being simply obtained by the obvious replacement.

Then,for the reason just stated in the preceed-

ing section, the appropriate frequency parameter

pertaining to such a study is (10-h) evaluated at

r*= 1, denoted as fi:

f = f (r= 1) W + + k Wex) r, (11)

where subscript "ex" henceforth stands for the external

flow or the leading term of the outer expansion of steady

flow evaluated at r*= 1: namely,

Vex = V0 (t= 1), (12-a)

Wex = Vb(r*= 1), (12-b)

and the like; we note that they are all independent of

z*as well as 4(and of r*, of course).

4Q

"I

I
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In characterizing the unsteady response near such

a solid surface, three,dimensionless parameters dis-

tinguish themselves. The first is defined by

U
a . , (13)

1

where u is an amplitude parameter, a measure of

the intensity of disturbances. The second, a, is the

ratio of the unsteady boundary layer thickness 6' to

r., where 6" is defined as

[Mexri _
[Rex I fi i (14)

Hence, 11= Me
r i Rex fi 7rij (15)

The absolute form of fi is needed in the above, for it can and

does switch its sign depending on the relative magnitudes

of w and the external velocities. If Vex = Wex = 0, these

two parameters are reduced to the ones employed by Riley

(ibid.) for his investigation of streaming in the absence

of base, steady flow; there, as long as the frequency is

prescribed and held fixed, both remain obviously unchanged.

This is to be contrasted with the following present situation:

as steady flow varies, the unsteady boundary thickness 6A

changes; consequently,R does not remain the same even for

91
)
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a given frequency. For example,6' or 8 increases when

fi is decreased by the change in Vex only. Likewise a

does not remain the same.

The third and last parameter c is a measure of

relative magnitude between steady boundary layer thick-

ness, 6 to the unsteady one, 6'; the former is defined

as

e , (16-a)

in terms of the duct length, L, and where Re' the Reynolds

number, so far purposely left undefined, now denotes

precisely

W pWex ex
Re exM L (16-b)

ex

Hence,

6
L

- - L/(16-c)

S, Re 1 / 2 r i

on account of equations (16-a) and (14). Recognize here

that if the Reynolds number is sufficiently high, c can

indeed by a small number, in so far as we are interested

in the region not too remote from the turning point to be

defined later as f. = 0 .

1

Li
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Our interest is directed to the situation where a

8 and E are all small in their magnitudes. Physically

this may be considered, as follows: the amplitude of

unsteady excitation is small; and compared to the

cylinder radius, the unsteady boundary layer thickness

is thin, within which thinner steady boundary layers at

the high Reynolds number is embedded.

We name the annular region confined between the

outer edge of the unsteady boundary layer and that

of the steady boundary layer as the "middle deck";

then, the "lower deck" naturally suggests itself as the

annular cross section between the outer edge of the steady

boundary layer and the cylindrical solid surface. The

*The main stream consisting of both swirl and axial

velocity, to be precise we have to take the possible pre-

sence of more than a single thickness of the steady boundary

layer into consideration (Cooke 1952). If definiteness

requires it, we may choose the thickest among them as

corresponding to the outer edge of the steady boundary

layer.

________I
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double deck structures are present near both the outer

and inner cylindrical surfaces; Figure 2 shows this

schematically and in disproportionately magnified manner.

The annulus bounded by two middle decks we call "core"

We turn now to the construction of series expansions

appropriate for each region, starting from the middle

deck.

i1.
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4.1 Middle-Deck Series Expansion

Let n be a middle deck variable or inner

variable, scaled to the unsteady boundary layer thick-

ness and defined by

n = -l (17)

We first turn to the steady flow field within

the middle deck, corresponding to the first terms on the

right hand side of equation (2), and express them in the

following form:

U = Wexr(r*,z*; Re) , (18-a)

V = Vex [I + (r*, z*; Re)] (18-)

W = Wex [1 + W (*,z*; RI, (18-c)

R = Rex X(r*,z*;Re) , (18-d)

Oex T(r*, z*; Re), (18-e)

2
P RexV 2 (rk; z*;Re) , (18-f)

M = M a(r*,z*; Re), (18-g)
ex ' e

and M -2 Ma (2) W" (18-h)

ex d'
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By definition, the middle deck lies .exterior to the

steady boundary layer; hence, such outer expansions

of steady flow as equation (4) and (5) are applicable

here. We expand F,n , etc., in powers of Re

which is proportional to ca from equation (16-c) and

obtain

U = WexEanl(VIC,z*)+--- , (19-a)

V = Wex [1 + E0(r*)+ sO l(rk,z*)+---] (19-b)

W = Wex [1 + 0 (i-)+ el(r,z*)*--] (19-c)

R = Rex [X(F* ) + c:Xl(rlr,z*)+--- (19-d)

0 = 0 x + +

etc. ,where

0 = 0 (r*= 1) = 0; X0(r*= 1) = To(r*= 1) -- .

(19-f)

The last one, (19-f), follows owing to the very definition

of quantities with subscript "ex". We,then,expand the lead-

ing term with subscript "0" around r*= 1, make use of

equation (19-f) and finally express these in terms of the

I
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middle-deck variable n. Thus we have

U = WeE; r)1 (f,z*)+ ,- (20-a)

V = V ex[1 + alno + a 2 (no)2 + + E lnY- (20-b.)

W = Wex [1 + b1na + b 2(nt)2 +- + E a(n,ZL*)+-] (20-c)

R = Rex [1 + c1no + c2 (n )2 + -- +EXl(n,z/-)+---] (20-d)

e = 0e).x [1 + dlnO + d (no)2 2+. + e~a1(n,z*)+--], (20-e)

and the like, where a1, a2,.. b1, b2  ... ,etc. are all

constants.

For the unsteady parts, denoted with primes in

equation (2), we expand them in terms of a, and c with the

triple indices affixed to each term: for instance,

"ij k

where i stands for the order of a, j for ~,and e for k.

Accordingly we write

=, uO (u6'00 + cuj00 + au 010 + Cu 001 +--)(21-a)

u.v000 + avj'00 + OV0,10 + ev60  +--) 21b

W= u (w'o + ctwj 0 + OW61  + CW60  + -- ),(1c

00 1 e p 0 0+ p 0 0 0 0 1  +- ) (21-c)

p'=u R - f p 0 +tp 0  + +-- ),O (21-d)

A ex (P0+ag0 + ap1 + c0 +-- ) (21-e)

eu 000%oo 100 00001j
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U 4'0 + al + 0 PO, + s :O +---) , (21-g)
ex

(2), Mex (2) (2) (2) (2)U() T_ u00-0o + "J'1oo + 0 P '010 + C '001 +-)
ex

(21-h)

where in the last two equations, the leading terms are

related to the one of 0' on account of (1-g) as

- do ~.'(22-a)000 =0000[ d IT = i

(2) [d 2 ) (22-b)
11000 E)oo [d1  J'2-b

The derivatives of a and a(2) defined in equations (18-g)

and (18-h), respectively,. are to be evaluated at the steady

temperature corresponding to the inviscid value on the wall.

Note that the leading term of u" is 0(e); the others are taken

to be 0(l). All the first terms in the brackets with indices

(0,0,0) representing linearized viscous disturbances, we ex-

press them explicitly as

jf k .z*- t*)
Uo00 U000 (n) ei m +kr t) (23-a)

v 00 = v00 (n) ei(m  + kriz*- t*) (23-b)

wo000 = w000 (n) ei( mI +kriz*- t*) (23-c)

and the like.
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4.2 Core Series Expansion

In the core, i*, is the appropriate radial

coordinate or the outer variable. The expression for

the steady flow, equation (20), is immediately applica-

ble to the core as well.

For the unsteady part, we expand them in

series structually simil.ar to (21) except for u- where

the leading term is now elevated from O(r3) to 0(1), and

equal to the others. Thus we have

U,= U (U'0  + a + r3U 1O+-) ( 2 4-a)

0 V 0 0 + 10~f0 + 1 + cVu 1 +--), 24b

W,= u (W'j0 + a' + ao + ew~0  -- (2 4 -c)

P= u R f.(I + a + a, + . (24-d)

ex 00100100

p' uex (R' 0  + aR'0  + BR-i + s-R- 0 +-) (24-e)

~~00 1e+ ce 00 + 1 + 001l~) (4f
Aex

t' u +x +O +24-+
ex (M160 0 + M"iO cM o1+O'), 00-g

=j U ex (M (2 + aM (2 M6 1  o c ' ) (24-g)000x 100 +

ex 000
(24-h)

where again the leading terms of the last two equations are

related to 0'00, the first term of o', by
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M d. _d Y
000= 0o0oL T= 0o(r*), (25-a)

M0(2) 10 00r (25-b)
00 00= dT L o(r*)

The derivatives are to be evaluated at the steady temperature

corresponding to the inviscid value.

The leading terms represent the linearized inviscid

disturbances and take the following forms:

U =000 = U0 0 0 (r*)ei(m + kriz* - t*), (26-a)

VI000 = V0 0 0 (r*)ei(mP + kr Z* - t*), (26-b)

W0 0 0 (r*)ei(m + krz - (26-c)

etc; these correspond to equation (9) but, here and hence-

forth,we are denoting them by the formalized triple indices

instead.
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4.3 Matching between and Middle Deck and the Core

Standard matching procedures (Van Dyke, 1962

a and b) applied between the middle deck and the core

expansion series yields at once the required matching

condition. For u', we have

_,00(i "* t*)= 0 , (27-a)

U U ( 1 , _Z * , t * ) = 0 (27-b)

U, 0 0 (l,pz*,t*)= 0, (27-c)

U01(lOz*,t*)= lim lu0(n,l z*, t) u000 n 2]d
nn n (27 -)

The last equation represents the influence of an-unsteady

displacement thickness, exactly analogous to its steady

counterpart (Van Dyke, ibid.). For v', we have

VO0 0 (l,,z*,t*)=lim v' 0 0 (n,p,z*,t*), (28-a)
n 0

VO0 (, , z*, t*)= lira v'0 (n, ,z*,t*), (28 -b)
001 ~n - o0

V, 0 0 (l,, z*,t*)=lim vl0 0 (n, z*,t*), (28-c)10n i -+V00 O 128-d

V010 "(i, ,z*,t*,=nlim, V 0 ( n , , z * , t * ) - 1 a n l  (2"d

The identically same relationships hold for w', p',p', and

0'. The matching for ji'yields
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MIOO(l,O,z*,t*)=lim pj-o(n ,z*,t*) ,(29-a)

n-+oo

ll i(1, p,z*, t*)=lim p '01(n, p z*, t*) (9b

M61(lo~*,*)li P 1 oLJ Or*=t*

-[p__i ,60or~ (29-c)

I The same matching conditions hold for v 2
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4.4 Lower Deck and the Transfer of Boundary

Conditions

Even in the lower deck, the appropriate radial

variable is "n" introduced in equation (17). Compli-

cations arise, however, in the lower deck due to the

steady flow field immersed in its entirety within the

steady boundary layer, whose structural complexity has

already been mentioned in Section 3.1. Though rotational-

ly symmetric, not only does the steady profile change

radially from the solid wall to the outer edge of the

steady boundary layer but also, owing to its axial

development, it is dependent on the z coordinate as

well; due to the presence of both swirl and axial flow

in the main stream, the steady flow field is fully three-

dimensional; it is through this that the unsteady dis-

turbances propagate.

One can circumvent this difficulty associated

with the lower deck by transferring the boundary con-

dition on the solid wall to the inner edge of the

middle deck; such bypassing is valid for terms like

(0,0,0), (0,1,0) and (1,0,0) but not for (0,0,1). Take,

for example, v . We compare its exact solution denoted as v (e),

assumed to be somehow knbwn in both middle and lower

decks, with the present one for the middle deck, denoted here

temporarily as v "(md). Then at the inner edge of the

middle deck located at n c(z*),we have

A -
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v (e)(n = E(z*), z,t*)= (md) (n = (z*),z*,

Substitute equation (21-b) into the right hand side

and expand both sides around n = 0. Then from the

no slip condition on the wall, the left hand side

becomes O(E) and the right hand side yields

V0,o0  V0,0 = Vo 0 = 0 at n = 0. (30)

Although not so with v' 01 , this will not present diffi-

culty as far as the leading term of the streaming is con-

cerned. Exactly identical relationships can be derived

for u" and w'(For the former, match gu"(e) with its middle

deck counterpart, equation (21-a).)Likewise, for the thermal

condition where the unsteady temperature on the wall is

maintained to be zero, we have

000 = =100 0 at n = 0, (31)

but 0 0;

for the thermally insulated wall

an an - 0 at n = 0, (32)

but n 0.
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t

5. Hierarchic Structure of Expansion Series:

"Family Tree"

Substitution of the expansion series in the preceeding

Section 4 into equation (1) yields sets of equations

appropriate for each order. In this section, we assemble

them in hierarchic order, and describe their salient features

before presenting the details of the solution.

..

_ _ .

- - - Y~--
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5.1 (0,0,0) Core

The set of equations is given by:{ Ve[ -]+ kr.W00
+m- [co (1+ oJ 1

+ Ae { *a*IrV ~o 1  + ikriXWO} =0,

ikr.W (33 -a)

X0 i + im Ve (1 G+ Ed - + lki ex
0 [0 i 0 - w 000  PO

- ex 1 Vex 2E)
0)* (1+xj RO (1 1+

- - O (33-b)

XO { "0OO + vm [ - *1(1 + Ed -0 + ikr WO

+ O Vex ex -'I im
f110 7a* ,--w U000? -* POOO,

(33-0)

-w V r (I 1-~m e ikr.We

ex r-1 U) -d)

Wf - I ikr. 3

+ 000 A*%Q i 000 3-d

f f
A Yyl P000 T=OO 0 X ,IO (33-f)
eex
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with the boundary condition

Uooo(r=l) = 0, (33-g)

and the similar condition to be satisfied on the outer

cylinder.

This set of equations, once restored in the

original variables, is identical to equation (10)

corresponding to the linearized, inviscid disturbance.

They are complete, independent of (0,0,0) of the middle

deck or any other higher order equations. They being

treated in detail in the Appendix, we do not deal with

them any more here.
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5.2 (0O,0 Middle Deck,

The set of equations is given by:

~ + - Ie U0 + im- iri 0, (34-a)
000 fi dn000 + i O00j

d2 i70
=vO iV000 (r'=l)± -p-7-

dn (34-b)

ikr *2-

iW =... d dw 00 0

000O m 0 0 0OO(r=l) ± -- Y(34-c)

18000 + d(yl o (nl 1 d2000
ex 0 0' Y-)r (34-d)

f. -

jK-Y V000(r=l) = POO+ 100(4e

where ± corresponds to f. > 0 or f. < 0, respectively.

The boundary conditions are:

U0 0 0 = 0 0 0 =w 0 00 =0, at n = 0 (34-f)

-o 0 or d 0 0,0 at n =0 (34-g)

v000 (n=-) =V 0 0 0 (r=l) , (3 4-h)

kr.

W 0 0 (n,=co - V0 0 0 (r=l) , (3 4-i)

100 (n=-o) I (Y-l) V (r=l), (3 4-j)
000mAx 000

ex

p000 (no0) mA V000(r=l) ,(34-k)xI
(n -V r**A7.(34-1
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In the above, the radial component of the equation of

motion

dPo00

has been spent, upon combining with (O,O,O)order of core

equations, to replace the pressure terms on the right

hand with the inviscid tangential velocity on the wall,

V000 (r=l). Once V000(r=l) is specified, the set is

complete and can be determined independently of any other

orders. Absent from them are the influences of varying

steady flow field, curvature, the second coefficient of

viscosity or any other higher-order effect to boundary

layer theory. In fact, they are nothing but those of a

conventional compressible, unsteady boundary layer,

rendered into linearized form. Convective terms being

eliminated, the equations are described relative to a

helically moving frame of reference: a coordinate in

screw motion, revolving with the inviscid swirl Vex and,

at the same time, advancing with the inviscid axial velocity

Wex*
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5.3 (1,0,0) Middle Deck -- Streaming Part

By taking the temporal average of (1,0,0)

order of the middle deck,we obtain the equations which

will turn out to be the leading terms of streaming.

We first list the ones corresponding to continuity,

tangential and axial momentum and energy, setting aside,

for the time being, radial momentum and equations of

state:

A e a <uf 00 > + a(5a
f 7 an 0+0 *W U0,00 0, 35a

00a [aL~n: ex an ]

(35-b)

a a [ 2  f. - -Ku00  w'00>.+. 13 w10> K + (fan-[n (wAex anan

(35-c)

aeex

+ <w ()>-(1

+ i p'0 - eal -6- e i~ +kr iz*-t >
Kex Rea [0 00 e1]

r LIn 00 ex 00 a /

fyl [/ awA 2 av,0  21
1 000'> 000 n j

(35-d)



where < > denotes the temporal average and + corresponds

to either fi > 0 or fi < 0. The boundary .conditions are

as follows:-

<uv 0 0 > =<wj 0 0 > 0 at n = 0, (35-e)
100> = Vioo <WI00>

<80> = 0 or <ae-- = 0 at n = 0, (35-f)

and for n-*

,<;0 <Wl,00> <{0
lir -n lim n -r n - 0> (35-g)
n-* o n -c n +-*O

As for the boundary condition for n-- , the

original matching condition for v I reads100

< V100 > 10 r V=0 > I"

and streaming in the core will-be in need of this; for now,

as usual (Riley, ibid.; Batchelor 1967, p.360.) the weaker
<v 100>

condition <vO> = finite or equivalently an
100 n-o D

as n suffices; the sitailar conditions apply to w' and OA

as for ujb0, one does not need any condition at n -+.

<Uloo>,<Vlo0> , <Wjo0> and <{ 00 >are completely

and uniquely determined in the middle deck from the above.

These d.c. components of velocity and temperature field are

dependent upon only (0,0,0) order in the middle deck and

they are independent, among others, of the streaming part

for (1,0,0) in the core; on the other hand, the latter will

be dependent upon the former. This holds regardless of the

magnitude of the streaming Reynolds number, Rs
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The sequential dependence on these is depicted

schematically in Figure 3 as a "family tree" of stream-

ing (applicable to d.c. component of temperature as well).

The set of the foregoing equations, (35), is independent of

variations in the steady state and of both steady and unsteady dis-

placement effects. They are independent of curvature

effect, as can be readily recognized by re-expressing

them first in terms of the conventional boundary layer

coordinates and identifying them as time-averaged forms

of the boundary layer equations, where the second-order

terms of the unsteady disturbances are retained: The

issue of curvature effect was first raised by Stuart (ibid.)

who also justified its neglect, irrespective of the value of

Rs, on physical grounds and Riley (ibid.) confirmed this

afresh by a matched asymptotic expansion.

Observe in (35-b) and (35-c) the presence of
aVo0

0

terms in the form of 0 o , which correspond to

the Reynolds stresses, generated by the fluctuation of

viscosity responding to the unsteadiness in the tempera-

ture pO00 and coupled with the temporal oscillation of the
avO000rpeet

strain __000 ; likewise in (35-d) the term 0 represents

the heat flux caused by a similar fluctuation of thermal

conductivity and temperature gradient.

In contrast with the d.c. component of velocity

and temperature, the temporal averages of pressure and

density, <PI0 0>and <PI00>' respectively, can not be

determined from the following equations and boundary

,I
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conditions alone, which have been intentionally held over

so f ar:

~ 0 (3 5-h)

f. f. 35i
ex 10(I:0>> + We. <Pdood>(3-i

with

urn <P 10 0 > =KR'OO>r*I and lim~p '00 > = <P1'j0>r~

They need to be matched with the corresponding ones in the

core.

I -7e
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5.4 (1,0,0) Core - Streaming Part

In the core, (1,0,0) streaming is driven by

the streaming of the same order in the middle deck--

regardless of the value of R s, no matter how large or small. As

is now well know, the structure of streaming outside of the un-

steady boundary layer is, however, strongly dependent

upon Rs, as pointed out first by Stuart (1963, p. 384)

and subsequently confirmed explicitly by such experiments

as for a cylinder oscillating in otherwise stationary

fluid (Bertelsen, 1974).

If we take simply the temporal average of

equations of the order of (1,0,0) in the core, they

correspond to the case of Rs << 1 and are given by:

<Ujo0 > = 0, (36-a)

V Vex2
X ex 2 a 0)  <V-00> ex 1.(I + 20)2<Rj00 >

0f r* ( 100 - i fAe r*(+%) Rf>

r* r*LO <U 2>

1 <V'0 2,e (1 + EO <R' 0  V,00
ex

SU 0 0> 2 (36-b)

--. 0 V002- - (I + -0) <R-0-"V-00"
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f. f.
- " < fo0> =0 <Rf 0 0 > + X0 <efo0> +ex <R60 0 " 00>

ex o Oo>

(36-c)

with boundary conditions

<V100> r.=l = lm <V 1 0 0 > (36-d)
fl-)co

<W, lim <w 0 0 > , (36-e)

<(e 00 > r*=l = lm <6 00> , (36-f)

together with the similar boundary conditions to be

satisfied on the outer cylinder surface. In deriving

these, we have made use of the phase properties of (0,0,0)

order of the core flow, already referred to in Section 3.2.

Missing from the above set is the energy equation,

which vanishes identically by virtue of equations (7-b),

(33,-e) and (33-f): the equation of continuity and the

momentum equations in and z directions, they all collapse

to yield (36-a).

Viscous terms being also absent in the above momen-

tum equations, they are of inviscid type. The boundary

conditions (36-d) and (36-e) correspond, however, tothe

non-slip ones on the "walls: they are set in spiralling

motion by streaming in the middle deck and to the

prescribed surface temperature of (36-f). Then, not only

some of the equations are lacking, but due to their

I.- r - ~~--- . - - --
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depressed order, ostensibly they do iLot satisfy the

boundary conditions. The latter is, however, not an

indication of some kind of breakdown, but the missing

ones are to be supplied from the terms of higher order

than the present (1,0,0). That this is so can be illu-

strated by referring to the streaming induced by fluc-

tuation in incompressible flow, which is otherwise at

rest. For V e 0, (36-b) is reduced to
ex

1 a r ~u 2 1 1 2I r (V >~0U <.X pV( > (37)

r* Dr* -0 -- Po 0 > (37)

and we note that (V 0 &r the tangential velocity is

now completely lost from this or, for that matter, from

everywhere else. It can be recovered only from the con-

sideration of viscous terms of (1,2,0) order, a higher order

term in the expansion series: after some algebra, we

obtain

d l[r Y> = 0 (38)

Introducing a time-averaged stream function

O00 n> uwhich satisfies

100 = - (39)



57

We may express the above as

<V4 (40)< 'Ioo> =o,

since any derivatives of < 0 0 > with regard to 4 are

zero; the biharmonic equation is originally due to

Rayleigh (ibid., 4 lines above his equation (23))and de-

rived anew by Riley (ibid) by matched asymptotic expan-

sions.

The foregoing illustrates the fact that higher-

order series terms in expansion scheme are needed, in

general, to determine the present (1,0,0) order stream-

ing in the core; this presents the entanglement of the

formidable backward linking between terms in series,

as opposed to more direct forward linking.

The presence of the backward linking is explicitly

brought out here, since several investigators, without

recourse to the apparatus of the matched asymptotic ex-

pansion, seem to have unfortunately erred on this score

* To avoid any false misconception, we take heed of the fact that

although the streaming satisfies the biharmonic equation,

it is not the Stokes flow in the sense that the inertia terms

are nil;instead, the inertia terms are comprised of lower

order terms as seen from equation (37).
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by matching the exterior streaming, obtained from the

inviscid equations expressed only to the second order

of disturbances,with the one derived from viscous

consideration near the solid boundary.

We turn now to the case or R >> 1. Thes

fundamental equation governing the exterior streaming

for this was established by Riley (ibid.) for incom-

pressible flow in an otherwise state of rest; it cor-

responds to the full Navier-Stokes equations for steady

flow, where Rs replaces the Reynolds number and plays

its role. Thus in order to conquer it, nothing

short of wholly numerical computation (Duck and Smith,

1979; Haddon and Riley, 1979) seem to be effective.

In view of these complications, we shall

not attempt to obtain streaming in the core, being

content instead that the phenomena of our interest

can be explained, as seen shortly, by inspecting

the behavorial change in streaming at the outer edge

of the middle deck, whose lead the streaming in the

core follows.
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5.5 Others

Although the remainder of the series will not

contribute to the leading term of acoustic streaming, we

record here, for the sake of completeness, their main

features.

For the time-variant part of (1,0,0) order, the

situation is different from the preceeding streaming part;

that is, contrary to the latter, the former in the core

is determined completely by the (,0,0)term in the core and it is

of inviscid and non-heat conducting type; it is indepen-

dent of its counterpart in the middle deck or the time-variant

part of (1,0,0) order which is, in turn, dependent on the

time-variant part of (1,0,0) order in the core.

(0,1,0) series in the core is affected directly

by (0,0,0) order in the middle deck and independent of

its own counterpart in the middle deck; the boundary

conditions represent an instantaneous displacement effect

for the unsteady boundary layer and this turns out to be

non-zero.

For (0,1,0) order in the middle deck, the

pressure gradient in the direction normal to the boundary

layer is no longer equal to zero, it being balanced in-

stead by a centrifugal force related to the local curva-

ture; the second coefficient of viscosity is still missing

therein and all these features are analogous to the

second-order theory of the steady boundary layer (Van Dyke
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1962 a, ibid.). In addition, the influence of radial

variation in steady flow field appears for the first

time in the unsteady boundary layer equations.

All these, including (0,0,1) series, possess

sinusoidal time-dependences;hence, once time-averaged,

they all vanish, leaving the streaming part of (1,0,0)

order as the leading term.

'4i

, .,n ,m,. iinJ i imnnn i |
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6. Solutions in the Middle Deck

We now present solutions in the middle deck.

Consider at first the case corresponding to the thermal

boundary condition where the fluctuation of temperature is

maintained to be zero on the wall.

From equation (34), by straightforward calculation

solutions for (0,0,0) order in the middle deck follow

at once:

0 im V000 (r*=l + 2] [1 - exp (-An)

2 I1 - exp(Prl/2 An)]

e Pr1 /2A

f. 2 kr21
+n ex Am) (41-a)

v V000 (r*=l)[l - exp (-An)] (41-b)

i w~~000 = 0 00 0 =I -ep

(.000 om 000[ 2o]
_ 00 Ae m V000 (r*=l)[1 + (y- 1) exp (-Pr 'An)J (41-d)

ex

pi00  m - V0 00 (r.*=l) (41-e)

O0 = (Y-) V000 (r*=l) [l - exp P- pl/2An)] , (41-f)

Pooo A f 1 e 1) - exp (- ,-/2 An)
ex

(41-g)

L7I
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V 1

where A - q- (1+ i) and + corresponds to fi> 0 or

fi< 0, respectively.

Our principal formula , the streamings at the

outer edge of the middle deck near the inner cylinder

is immediately obtained from equation (35-b). To

render the final expressions explicit, we need,in m00 0

terms ,the specific relationship- between viscosity and

the temperature. For this we choose the Sutherland's

formula: 3/2 0* + s

11 = P* ( ' )T + S

where p* is the viscosity at the reference temperature 0*,

and sl,is 1140K for air. Then, the tangential streaming

at nL- or at the outer edge of the middle deck near the

inner cylinder is given, with the original r restored in

place of r*, as

2
[Z V0 0 0 (r=ri)] m

1V> 2ri [w- L Ve~r=ri)- kW(r=r]1

x Y. [1 i)j- G + -FPrFT)G

- (y-l) Pr+ [3 - ex(rr-i)+ I  , (42-a)

where G r ri e 1 2
mAex (r=rI ) (42-L;)

This we regard as one of our central results.
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Here, once again, we recall the following meaning

of notations appearing in the above: u V000 (r=r i) is

the amplitude, on the wall r = ri , of the tangential

component of "inviscid" linearized disturbance, their

wave structure being in the form of ei (m  + kz - wt).

Vex,W ,A and 9xare the steady "inviscid" tangential,
eex ex ex

axial velocity, sound speed, and temperature respectively,

all evaluated on the inner wall; Pr is the Prandl number

y, the ratio of specific heats and Sl,114°K.

From equation (35-c), the axial streaming is given

likewise by

(w'> = [u V ex(r=imJ k

2 -m (ri)

3 + kr 2 G + (-)
Xm

Pr G 3 - e4r=r+iS

(43)

The streaming in the tangential and axial direction

is observed to be independent of viscosity, as to be

expected. To our end, we need not correct for the Stokes

drift. We also emphasize that the expression is not re-

stricted to any specific, radial profile of the steady

-flow field.

<tp .*C
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The radial streaming is given, from equation (35-a),MV[~i)12uVO)( 20
<ul> [2Ne(r=ri) I m rr

i - 2Arex reri)

Sx 1 + ( 7-1 kr) G (4
X Y1 r7 (44)

whereNer ri= eWr= ri )

Nex(r=r i) being the steady "inviscid" kinematic viscosity on

the inner wall; the radial streaming is now dependent upon

viscosity.

For the thermally insulated wall, the results can

formally be obtained from the above by letting Pr

That is, for tangential streaming, we have

S[~ m i000 )

2ri - r- Ver=ri)-kWe -= r i)

Ik 3 i+( ) 2  [3 oer=ri)+err)S ox [ h + 2 - G - (y-1) G 2 - :r )

2m) L ex(r=r.)+ S 1

(45)

and the like.

The foregoing expression(42) or (45) for the tangen-

tial streaming embraces the well-known results as its

special cases. In the present representation of disturbances,

e i(m,+l.. wt) let k = 0 and in the place of 4 , introduce
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the circumferential distance x measured along the

perimeter of the cylinder. Then the disturbance may

be regarded as a plane wave traveling in the x direction;

that is, ei(tx - Wt) where k = m/ri. Moreover, con-

sider the fluid otherwise in a state of rest; then,

V = W = 0 and A and E are uniform. If the fluidex ex ex ex

is incompressible, G vanishes by taking Aex - and

equation (42) or (45) condense to

(v u V0 0 0)2  (46)

This is but a classical result of streaming at the outer

edge of an unsteady shear layer (e.g. Bachelor, ibid.,p.360).

On the other hand, if the fluid is compressible, G is

easily shown to be unity and we obtain, for example,

from equation (45) for the thermally insulated wall

<v'> - 4 x  I - (y-() 3 - Oe+  , (47-a)

where in A and 0 the spatial dependence is now suppressed.
ex e

The second term in the curly bracket corresponds to the

streaming induced by the Reynolds stresses which are

caused by the variation of viscosity in response to tem-

perature fluctuation, coupled with the unsteady change in

strain. Numerically, this is by no means small; for
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instance, at 0= 200 C = 2930 K, it is equal to 0.62

as compared to unity of the first term. This notwith-

standing, if we choose to ignore it, the above becomes

<v'> = 4A 0 00 ) 2 (47-b)
ex

which is also a classical result for compressible flow

(e.g. Lighthill,1978 b, p. 347).

Returning to the equation (42) or (45) for the tan-

gential streaming in swirling flow, of utmost importance

to our objective is the presence of the Doppler effect in

the form of

_ Ver=ri) - kWex(r=ri)

in the denominantor. Surely, then, this reveals that the

tangential streaming can reverse its direction around

turning points defined by

r. V (r=r.)- k ex(r=r 0 (48)
r. ex I.k~~r)=

And at the same time, the absolute magnitude of streaming

tends to become increased as sucha point is approached; the axial

streaming also exhibits the same features while the radial

streaming does not.

We proceed to discuss this turning point in more

detail in the next section.

- -
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7. Turning Points, Threshold Swirl

and Energy Separation

We define the threshold swirl as the steady tangential

velocity which corresponds to the turning point; that is,

Ve(r=ri) which satisfies equation (48). This is deter-

mined by the competition between frequency, axial velocity

and wave numbers of linear disturbances. They are inter-

woven with each other by the boundary condition for linear

waves, equation (10-g). The explicit representations of

such relationships demand the complete specification of the

radial profile of swirl, their derivation for a given

swirl being offered in the Appendix. By making reference

to them, first we discuss the threshold swirl where the

radial steady profile is of free vortex type confined

within an annulus; then we consider Rankine and forced

vortices occupying a single tube.
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7.1 Free Vortex between Co-annular Cylinders

Here our "inviscid" velocity profile takes

the following form:

U0 = 0, (49-a)

V0 (r)= F (49-b)
0) r

W0 = constant, (49-c)

for r.< r <ro. The last condition satisfies the radial

uniformity of stagnation enthalpy, as discussed in

Section 3.1.

The relationship between the frequency and the

above inviscid velocity profile, an aforementioned

prequisite for the determination of the threshold swirl,

is obtainable numerically in the manner described in (a)

of the Appendix. Let

r
Mr )ri (50)

(w - kW )r.
ex 1

Xn A (51)

ex 0

K = kr. (52)1

The first is the swirl Mach number referred to the "inviscid"

acoustic speed at the outer cylinder radius, Acx(r-r 0 ); the

second, a dimensionless frequency parameter where the

-. " . " ... - ' - "- ' 1
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suffix n stands for the order of the radial mode. Then,

illustrated in Figure 4 (a) - (d) as the solid lines, are the thus

computed curves of x0 corresponding to the lowest eigen-

value or the first radial mode, drawn as functions of M

for the various radius ratios X; the tangential modes corres-

pond to the first (m=l) and the second (m=2) and K=O,l;the ones

lying in the range of positive M correspond to the dis-

turbances spinning in the same direction as the steady

swirl; those for negative 11 correspond to the distur-

bances spinning in the opposite direction.* Observe that

over a wide range the frequency is nearly proportional to

the swirl Mach number, a feature pointed out in Section

1.1 in connection with the annular cascade data. The

virtual linearity suggests immediately an analytical so-

lution by resorting to the expansion in terms of the swirl

Mach number; such an approximate formula is given by

equation (A-8) of the Appendix, shown as chain lines in

Figure 4, and, on the whole, the results stand in reasonable

agreement with the wholly numerical results. The agreement

is closer for a narrow annulus; this will afford us to use

and exploit the analytical results for such a case, as to

be seen shortly.

With the aid of these relationships, equation

(42) or (45) furnish the result for tangential streaming.

Figure 5 (a) -(d) typify the one for several radius ratios; in all

of thcm, the dhncrisionless tangential stremiAg near the inner cylinder

One can also represent this backward traveling wave by the

one with negative iii in the positive range of M



is plotted as a function of the steady swirl Mach ntmber, M

the mode in the radial direction is the fundamental,

m = 1, and K= 0, and the frequency relationship used

therein is that obtained by the numerical procedure;

the solid lines correspond to the thermal condition

where the fluctuation of the temperature is main-

tained to be zero on the wall of the inner cylinder,

the broken lines to thermally insulated walls. There,

the positive value of streaming means that its direction

is the same as that of steady swirl, negative being

obviously the other way. Thus, the figures indeed

display the reversal of the streaming direction at

the threshold swirl Mach number. And the absolute

magnitude of streaming tends to become sizable in its

neighborhood with the threshold swirls serving as

asymptotes. To obtain the total magnitude of "d.c."

swirl, we only add or subtract the streaming to the

steady swirl imposed, of course; therefore, beyond the

threshold, the entire swirl becomes reduced near the

inner cylinder. Notice also that the threshold swirl

Mach number decreases as the ratio of the outer to

inner radius of the cylinder A is progressively increased.

The point appears more directly in Figure 6 (a)-(b)

where the threshold swirl Mach numer of the foregoing

first radial mode is drawn against the radius ratio

for the first and second tangential modes, m - 1 and

,1
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m = 2; as an example, for the radius ratio of 5, the

threshold swirl for m - 1 and K - 0 is only 0.37,

a low value for tangential velocity indeed.

The threshold swirl is independent of the

thermal condition at the wall; it corresponds to the

disturbances spinning in the same direction as the

steady swirl; no threshold is found for the ones in

the opposite direction. In addition, we can show that

for any values of K, whether negative or positive, the

lowest threshold swirl Mach number occurs at K - 0.

Figure 6 also reveals that as the radius ratio X

approaches unity, the threshold swirl becomes exceed-

ingly high. In fact we can prove that for such a narrow

annulus, in its limit, the threshold swirl approaches

infinity; that is, whatever the amount of swirl, no

retrogression of the tangential streaming occurs.

This comes from the fact that as exhibited by the afore-

mentioned analytical solution (A - 19) of the Appendix,

the frequency-swirl relation for the lowest eigenvalue

and K= 0 becomes such that it corresponds, in effect,

to the plane wave -- traveling with the phase speed

equal to the sum and difference of swirl and kx(r -ro).

To the extent no reversal of the streaming direction takes

place for the plane wave, no retrogression of tangential

-swirl occurs in the present limit. As a matter of fact,

we can expressly prove that for such a case, the expression
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of equation (42) or (45) is reduced to such as equation

(47); the denominator now becomes A ,a constant, and

therefore no reversal takes effect.

For the foregoing reason, the reversal in the

streaming direction is intimately connected to the pre-

sent three-dimensional geometry, which compels the

lowest mode of disturbances to deviate from the plane

waves; also, no less indispensable is the presence of

steady swirl.

For the outer cylinder, Figure 7 shows that

the tangential streaming at the outer edge of its middle

deck. Although, contrary to Figure 5, no reversal is

experienced therein, this is still indirectly affected

by the significantchange of streaming near the inner

cylinder: the reduction in tangential streaming of the latter

induces, in the annular core, a complex radial redistri-

bution of the angular momentum, whose precise details are

outside the scope of the present work; however, die to the

fact that the torque acting upon the annular core remains vir-

tually zero, we can say that this decrease has to be com-

pensated by the corresponding increase of tangential velocity

elsewhere, including the region near the outer cylinder.

When synthesized, the transformation of the total

d.c. swirl above the threshold appears as shown schematically

in Figure 8; thus, post-conversion behavior would plainly

separate the total temperature in the radial direction,

even if the static temperature remained uniform (we shall
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discuss this latter aspect in the next subsection 7.2.

The almost linear dependence of frequency upon

swirl, the existence of threshold swirl, the reduction

of total d.c. component of swirl near the inner cylin-

der beyond the threshold and the radial gradient of

total temperature or the Ranque-Hilsch effect--- all

appear to agree, at least qualitatively, with the key

features mentioned on the annular cascade in Section 1.1.

(For now, further quantitative comparison is beyond us

for want of more data surrounding the threshold swirl.)

In reference to Figure 5, as the threshold

swirl is approached with increasing amounts of streaming,

the assumption of small parameter of a and 0 breaks down;

moreover, the change induced in the base flow pattern

starts to modify the frequency-swirlrelationship. Neverthe-

less, we assert that the phenomenon is, at the very

least, an indication of what is to be expected of the actual

one at or near such a condition, the only substantive

modification in reality being more gradual reversal of

the streaming direction rather than the abrupt one across

the asymptotes depicted in the figure.

Still referring to Figure 5, just below the

threshold swirl, we observe that the streaming enlarges

its magnitude; this would increase the total d.c. component

of swirl near the inner cylinder. We venture to state,

however, that in reality such development is unlikely to
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occur due to the ensuing unbalance of radial pressure

gradient and centrifugal force. This expels outward the

lumps of fluid, which is, at the same time, swept down-

stream. It is replaced afresh by another fluid

element replenished from the mainstream. This new lump,

while migrating inward through the virtually inviscid

region, increases its tangential velocity in accord with

Kelvin's theorem until it attains, upon arrival at the

inner radius, the originally imposed steady tangential

velocity; thereabout the steady swirl remains, in effect,

unchanged.

On the other hand, above the threshold swirl,

the reduction in total d.c. component of the swirl

can occur indeed. The unbalance of radial pressure

gradient and centrifugal force tends, in this instance,

to submerge the lump of fluid toward the wall of the

inner cylinder. But, it is prevented from doing so by the

radial outflow resulting from the steady radial velocity

ejected from the steady boundary layer, in addition to the

radial component of acoustic streaming directed also and

always outward, as seen from equation (44); hence, the

fluid element is forced to remain adhered to the inner

cylinder with its magnitude of tangential velocity now

reduced.
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7.2 Rankine Vortex

We consider the Rankine vortex within a

single tube represented by

V0(r) = ar , for 0 < r < ri, (53-a)

V0(r) = £ for r < r < r, (53-b)
0 r' 0

where r = Ori2 and ri now denotes the radius at the interface

of a forced and free vortex. In addition, U0 = 0 and

W 0(r) is an arbitrary function of r.

Furthermore, we are interested in the unsteady

disturbance with k = 0 or K = 0 and the first radial mode.

As shown in equation (A-24 b) of the Appendix, the

frequency-swirl relationship for such a case can adequately

be represented by

W 1(m - A .) a (54),

+ sign corresponding to m > 0 or m < 0 respectively,

provided the swirl Mach number at the interface remains

well in the s-4bsonic range. This formula asserts that

the frequency is proportional to the swirl, a distinguishing

characteristic of vortex whistle first discovered by

Vonnegut (1954); see also Chanaud (1963, 1965). Its
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linearity is to such an extent and with such accuracy

that, by creating swirl and measuring its frequency,

it can be exploited for use either as a sensor of

aircraft speed (Nichlas, 1957) or a flow meter, provided

in the latter the ratio of swirl to axial velocity is

made to remain constant (Rodely, Chanaud and White,

1965). (Equation (54) is applicable even to incompres-

sible flow, as may be inferred to be so by noting the

absence of acoustic speed and density thereof; this can

also be directly verified by examining the incompressible

solution of Kelvin (ibid.). The proportionality of surge

frequency to rotational speed of water turbines, as

observed earlier by Rheingaus (1940) in draft tubes of

hydroelectric plants is yet another practical-manifestation

of the vortex whistle in incompressible flow.)

Although both for a Rankine and free

vortex, the relationship between the frequency and swirl

is found to be linear, the difference between full

proportionality (i.e. w - 0 as 0) for the present

Rankine vortex and mere linearity (w * 0 as r -, 0)

for the free vortex of the preceeding section is enough

to compel a notable change in the turning point, as will

be seen below.

Making use of (54), the tangential streaming

can at once be obtained from either equation (42) or (45)

"J t
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by replacing the subscript i with o. Figure 9

exemplifies such calculated results; the tangential streaming

at the tube periphery is rendered into dimensionless form and dram

as a continuous function of circumferential wave number

m, though, in'reality, m of course takes only integer

values; the swirl Mach number at the interface

r/riAe(r=ro),is taken to be 0.2, 1 being 2. Observe

that the direction of the tangential streaming is

always positive or in the same direction as the steady

swirl; this is so,not only for positive values of m

corresponding to the disturbances spinning in the same

direction as steady swirl, but also for negative

m corresponding to the ones in the opposite direction.

Observe also that the magnitude of streaming increases

as the circumferential wave number is decreased. In

fact, at m = + 1 or the first tangential mode, it can be

readily shown from equations (42) or (45) combined with

(54) that the magnitude of steady streaming becomes in-

finitely large, regardless of the value for steady swirl,

or of X or of the thermal condition on the wall; this implies

that the turning point, contrary to the free vortex, does

not exist for the present case. (Of course, in reality,

the magnitude does not become that much, but again we

take it as an indication of what actually happens.)

For the reason stated in the foregoing sub-

section 7.1 ,the unbalance between the radial pressure
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gradient and the centrifugal force work in such a

way as to bring the increase of streaming at the tube

perimeter into being.

Schematically drawn in Figure 10 is the

conversion of the original Rankine vortex to a forced

one by streaming. Acoustic streaming, if induced,

being present regardless of the axial position in the

tube, the transformation can immediately take effect

right at its entrance. This metamorphosis toward

a forced vortex and this alone, to say nothing about

the static temperature gradient, again tends to separate

the total temperature into a colder stream near the center and

the hotter stream near the perphery of the cylinder.

If and when the geometry of the tube arrangement

favors the excitation of such particular unsteady dis-

turbance as the one with the lowest eigenvalues in the

radial direction, m = 1, and K = 0, a forced vortex

filling out the entire tube is always formed and the

total temperature becomes separated, even near the inlet;

otherwise, the Rankine vortex and the total temperature

remain unchanged. This appears to explain the dichotomy

of the radial profile mentioned in the Introduction: a

forced vortex for a Ranque-Hilsch tube with separated

total temperature and Rankine vortex for others without

any such separation.
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By appealing to the streaming as the predominant

mechanism, we can also readily explain the other character-

istics of the Ranque-Hilsch effect: the radial difference

of total temperature is known to increase as the pressure of

the incoming air is raised. As the pressure is stepped up, the

amplitude of disturbances as well as the amount of steady

swirl increases (Cassidy and Falvey, 1970); from equation

(42-a), this,in turn ,is observed to induce more streaming

and hence more energy separations.

So far, we have not touched upon the role of

static temperature. The steady state or time-averaged ccponent

of static tenmperature induced by the unsteady disturbances at the outer

edge of the middle deck is always of insignificant magni-

tude; hence it would not sensibly affect the basic radial

"inviscid" pattern of static temperature, determined uniquely

by swirl, for any pattern of which the following holds:

higher temperature at the outer radius and a colder one

near the center. In fact, the data of Eckert and Hartnett

and Lay (ibid.) all show such radial distribution of static

temperature for Ranque-Hilsch tubes; the actual preservation of this in

the presence of unsteadiness existing in.the flow may

indeed involve the Knoernschild effect (ibid.), which

is applicable whether the disturbance is of organized origin

or of stochastic nature. In any event, this difference in

static temperature, when added, aids to separate furthermore

the temperature.

i~
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Once the formation of a forced vortex is

thus predicted, then, based on this, together with

assumed distribution of static temperature such as an

adiabatic one, and from these two alone, it is a simple

matter to construct the so-called performance curve

resembling the one given by Hilsch; in other words, upon

only the above two the performance curve rests; hence,

once they are somehow gotten in any theory whatsoever,

the performance curve follows at once and, contrary to

what might be believed, the mere reproduction od the

curve does not substantiate the postulated mechanism.

I

- - --
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7.3. Forced Vortex

Consider a forced vortex given by

VO (r) = or , <r <r ° , (55)

and U0 - = 0. With the aid of the relationship

between w and S1 obtained numerically by Sozou (1969),

we can show that no turning point exists for such swirl.

In the foregoing, we have considered situations

where, in addition to the steady swirl and axial flow,

both the tangential and axial wave numbers are specified

and the frequency is to be determined; on the other hand,

if the frequency of the disturbances is enforced upon

the swirling flow, held fixed and the axial wave num-

ber is, to be determined, such a case may be treated

in a similar manner, the streaming still being given by

equations (42) to (45).
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8. Summary

In this last section, we summarize the foregoing

results on streaming, interpreting them now in physical

terms from the outset.

We begin by recalling that for a wave traveling uni-

directionally through a gas in an otherwise state of

rest, the effect of viscosity manifests itself in the form

of the tilted trajectory of a fluid particle near the

solid wall; it is this skewness that gives rise to the

streaming. By skewness is meant that the axes of the

particle path tracing a closed loop are slanted as re-

ferred, for example, to the normal to the wall surface.

We draw the control surface, parallel to the wall and

intersecting the loop, and reckon the momentum trans-

ported by the lump of fluid circling along the loop, in

and out of the surface. Then, the very asymmetry of

slanting trajectory results in the unbalance of the mo-

mentum budget, once averaged temporally; the Reynolds

stresses, thus generated and of orderly origin, act upon

the fluid layer to set forth the streaming.

If the wave is propagating in the X direction with

waveform given as 'iei(Lx - Wt) at the outer edge of the

unsteady boundary layer, the streaming in the x direction

at the edge takes the form of

when by positive value we mean that its direction is the

same as that for the wave propagation.
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I.
If the wave is spinning in the circumferential

direction with waveform given by Zei(m - Wt) at,

the outer edge of the unsteady boundary layer formed

over a cylindrical surface of radius ri, the streaming

in the tangential direction follows immediately from

the above as

-2

ri

If, in addition, the gas itself swirls,with its

magnitude at the outer edge given as Vex, the Doppler

shift changes the above

-2
um .

W -m Vex
ri  ri

so that to an observer situated on the frame of reference

rotating with peripheral speed Vex, this would apparently

become the same as the one for the gas which is otherwise

at rest. The auove can readily be generalized to the

three-dimensional situation where the waveform is now

represented by ei (Om + kz - t ).; besides swirl, the steady

velocity now possesses an additional axial component Wex*

Then, in place of the foregoing Doppler shift term
VexVe

w- m- V , we only have to replace with w- m Vex kWri r ex'

the frame of reference being now in screw motion, advancing

-[-.



84

axially with Wex' while rotating with V ex. The elaborate

apparatus of the matched asymtotic expansion applied to the

full Navier-Stokes equation, has led us, in fact, to this

form as the leading term of streaming in the tangential

direction, the entire formula of which is given as equation (42) or (45).

The very form of the above Doppler shift implies that

the tangential streaming can change its rotational direction.
Vex

For w - m Ve kWex> 0, it rotates in the same direction
Vexas the steady swirl; for w- m - kW < 0, theri ex

streaming is now rotating in the opposite direction ---

retrogression occurs. As such a turning point is approach-

ed, the absolute magnitude of streaming increases sizably.

The turning point is determined by the relative values

of competing factors such as frequency w, steady flow field,

Vex and Wex, and the wave numbers, m and k; in turn, they

are dependent upon the specific radial profile of swirl

and the geometry of cylindrical configurations.

For a free vortex distribution contained between two

concentric cylinders of radii, ri and r0, the threshold

swirl corresponding to the turning point decreases as the

radius ratiox =- is increased, in a fashion depicted in

Figure 6. Above the threshold, the streaming, when added

to the steady swirl, tends to reduce the total d.c.

amount of swirl near the inner cylinder.

" d__
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For a Rankine vortex, within a single cylinder

and subject to the particular wave corresponding to

the lowest eigenvalue, m = 1, and K - 0, there is

no threshold swirl; instead, any amount of swirl in-

troduces, along the cylinder periphery, a streaming

rotating in the same direction as the steady swirl

and of considerable strength, converting it into a

forced vortex. For waves other than this, the effect

of streaming remains insignificant.

Be it a free vortex or a Rankine vortex, if the

original steady swirl metamorphoses into a forced

vortex, then this and this alone, suffices to give rise

to the Ranque-Hilsch effect (though the presence of depressed

static temperature distribution near the center also

furthers this).

The foregoing appears to account for the phenomena

described in connection with the annular cascade and the

issues raised for the Ranque-Hilsch tube alike,as de-

tailed in the Introduction.

Finally, we close this paper with the remark that

to the extent the temperature separation arises due to

the unsteadiness in flow, the present subject is the

converse to the phenomena of Rijke tube and thermally

driven acoustic oscillation of liquid helium (e.g. Clement

and Gaffney, 1960) where the very difference in tempera-

ture gives rise to unsteady disturbance; and in broader
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contexts, to the extent that we seek the present

mechanism as of organized origin distinct from the

stochastic process, this falls under the same mor-

phological class as the study of large-scale structure

in the mixing layer (Brown and Roshko, 1974).

I The author is indebted to Mr. C. E. Danforth for

calling his attention to the phenomenon of the annular

cascade and its connection to the Ranque-Hilsch effect;

to Dr. M. E. Goldstein, for helping him to clarify

several points by raising pertinent questions; to Drs.

Caruthers and Maus for providing valuable comments on

the original manuscript; to Drs. Cassidy, Falvey, Flandro,

Keyes, Lay, Ragsdale, Savino, Sforzini and Vonnegut, for

answering to his various queries related to their works.

The figures are based on the computation performed by

Mr. J. Q. Chu and Ms. D. E. Gonzalez; Lt. J. M. McGee

also contributed to this. The work is supported by the

Air Force Office of Scientific Research under Contract No.

F 49620-78-C-0045.
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Appendix

This appendix concerns the relationship between the

frequency and the steady swirl corresponding to section

7.1 and 7.2; it will be obtained from the unsteady, inviscid

linearized approximation, equation (10) or equivalently

equation (33).

a) Free Vortex Between Co-Annular Cylinders

For this, equation (49) specifies the steady profile.

Choosing r*v or the moment of angular momentum as our primary

dependent variable, we can extract, from equation (10) and with the

aid of equation (8), the following, single,second-order differential equation:

2 2

*~ + + 2__ _ _ _

- ~-+ (v) 1 1 + 0, - 1 -dr *z 1 ~ M.(* - 4

_ _n 1_2 2m2
+ - 72)

(A-l)

with the boundary condition given by

= 0 at r*= 1 and r*= X. (A-2)

The definitions of M, I Xn and K are given in equation (50)

to (52). The eigenvalues Xn are to be'determined once the

values of M,, K , m and X are given;

[I'
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Figure 4 in the text has been obtained by the standard

eigenvalue search procedure using the fourth order

Runge-Kutta method.

In addition to this wholly numerical procedure,we

can also obtain an approximate analytical representation

of eigenvalues and this we discuss next.

Consider at first the case of no swirl. Then r*7 (o)

be expressed as a linear combination of Bessel functions

such as

r*- () = A m(zn r%) - Ym(zn r*) m (z ] (A-3)

Ym (zn)

where A is a constant, zn is given by

Jm" (Zn*) Yn' (zn) - Ym(zn*) Jm" (zn) = 0, (A-4)

where z * is related to z bywhr n n

Zn * = Z n .(A-5)

In (A-4), the primes denote the derivatives with respect

to the argument of the Bessel function. zn is related to

Xn by

Xn + zn (A-6)
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Based upon this, when the swirl is present, we expand

rv and Xn in terms of the swirl Mach number, M and retain
n0

only the linear term:

K2 + (z) 2  + MSmM (A-8)

where r* j( 1 )and S nm are to be determined. Substituting into

(A-i), retaining only terms up to 0 (MO) and satisfying (A-2)

and making use of the integral formulae involving products of

the Bessel function (e.-g. Watson 1966,pp.l34-137), we obtain,

for m> 0

S Al z2 (A-9)

where

=
2J m'(z )ym (z n*) I ll(JY) - Ym-(zn) Y(m-(zn*) 12 (j 2

- M J(zn) J M(z *) 1 13 (Y 2) (A-10)

A2 =2Jm(zn)YM(z*) 121(jy) -Ym;(zn) Y'(z*) 122 (J 2

Jm'(zn)JmA(zn*) 2 3 (Y 2) (A-1l)

ill 112 etc. are given by
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I 1 (JY) i - [ 0 )Y,(z) + 2 m1Jj(z) Yt (Z)

0*

z zn
n

rn- 1

K 2 1  r 2 2mW + jMz n

(A- 13)

2 - 1 y ( ) 2 y-1 2z Yzz

(A- 14)

1 21 (JY) 1 Z2 [2J(Z) YM(z -nI(Z)Ym+i(Z) -J(Z)~y (z]Z=z n

(A-15)

~2) ~1 z2 (Z 2 -J (Z) Z~(z Zi

(A-16)

j2 (Y 2) =1 zi2[ y 1m(z) 2 -y._,(z) Y., 1 (z) Z Zn

(A-17)

'Fromn (A-12) to (A-17), [(Z) j= n~ denotes the following:
If Z=n
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[f(z = n = f (z) - f(z n ) . (A-18)

n

(If m <0, Snm remains the same for M> 0 .)

The values of the lowest eigenvalue z0 and corresponding Snm,

computed from equation (A-4) and (A-9),are listed in

Table 1.

z0

x m=l m=2 S01  SO2

1.01 0.99503 1.99006 0.99009 0.99016

1.05 0.97571 1.95141 0.95202 0.95202

1.1 0.95274 1.90550 0.90772 0.90770

1.5 0.80509 1.60810 0.64760 0.64420

2.0 0.67734 1.34060 0.45551 0.43714

3.0 0.51362 0.97749 0.25366 0.21202

5.0 0.34102 0.60694 0.10241 0.07354

7.0 0.25240 0.43556 0.05240 0.03686

10.0 0.18035 0.30529 0.02516 0.01793

TABLE 1.

The comparison of the foregoing analytical repre-

sentation with the numerical procedure over a wide range

of swirl is given in Figure 4.

As a special case of the above, we focus expressly

our attention to the narrow annulus; let )-i.
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Then, we can show explicitly that

z0 .ImI

and

SOM 1

For k = 0, this leads immediately to
A (r =r ) Iml + mF

ex o ri rori

from equations (A-8) and (51). Then the disturbance repre-

sented by ei(m - wt) becomes,for the narrow annulus

exp im It ri + F o x_ (r =rd +4 r
r
o

(A-19)

The term within the second shows that this corresponds to a plane

wave propagating at the acoustic speed while being convected

at the swirl velocity, as to be expected.

If we change our viewpoint slightly and regard was

given and K to be sought, then by insisting that K is real in

(A-8) and (51), the so-called cut-off condition for the

*propagation of disturbances through ducts can be obtained;

this generalizes the Tyler-Sofrin formula (1962) by including

the presence of both the swirl and the axial flow.
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b) Rankine Vortex

For the radial profile given by equation (53), the

boundary conditions for the unsteady disturbances are:

(r ro) = 0, (A-20a)

p and u are continuous at r =r.. (A-20b)

Sozou and Swithenbank (1969) calculated the corre-

sponding frequency relationship by wholly numerical

computation. (Their treatment is limited to the two-

dimensional flow. Although, as stated in Section 7.2, the

axial velocity is,at present,allowed to exist, as long

as K is set equal to zero, its presence will affect only

the axial disturbance, leaving the rest same as two-

dimensional flow.) Here we offer an approximate analytical

representation, choosing p as a primary dependent variable.

In the innermost core of a forced vortex region defined by

0 < r <rithe governing equation is given, upon combining

equation (10) together,by

Z  r A02(r) J -

+ 2m 3 2(-2)R 2  m 2  DP 0
AA0 A0r()A 0 (r) J O,

(A-21a)
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where Ao(r),X1, and D are given by the following:

A0 2(r) =Aex 2(r=r )+ -) 2 (r 2 _ r2) (A-21b)
A am (A-21b)

D = ( -)2 -42 •(A-21d)

is related to p by

(22
R0r) d lA 2 r - + .[2mA 0 (r)SI

-(2 -y )A r 9 2] (A-21 e)

On the other hand, in the free vortex region defined

by ri<r < rz, the governing equation is given by

d + (2 3)r 2  + 4mr ]
drA 0  A(r)r " W

X22 (r) m2  2m(2y- 3)r 3 28(vir)2

Sr) r A2 (r)r A0 2 r) X (r)r

4mV + 2(2-) r2 1
A2 (r)r4  A0 z(r)r 4  p = 0 (A-22a)

where A 2 (r) A* e 2 (r~ro) +I (Y-1)[Q 2 (r 2_r 2)- r2(l 2

A2  mr (A-22b)

r (A-22c)

and u is related topby
_ A022"02(r)r (2 -) 2

i2 (r -2 3 -3RO-r) )ir dr X2 Jr '

(A-22d)

_ T' -',' := .;" ., d' I I I IIIIIW It I
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Expand p, u and w in the power series of

P P (0) + ap (I)+--- (A-23a)

U = u (0) + Slu (1)+--- (A-23b)

W= W (0) + ' ()+---. (A-23c)

We confine our attention to the limit of W( 0, which

corresponds to the lowest engenvalue for the case without

swirl, or, in the terminology of Sozou and Swithenbank,

to a slow wave. We substitute (A-23) into (A-21) to (A-22)

and retain the terms up to O(Q). This yields the following

expression for w(i):

W (1) =+ (imj - 1 + x-21ml),
- -(A-24a)

and, w becomes from (A-23c)

W = + (Iml- I+ 2ImI)
(A-24b)

where + sign corresponds to m>0, - sign to m<0.

For the special case of m =1, this is reduced to

which is identical to equation (9) of Sozou and Swithenbank,

which appears to have been obtained by the inspection of their

numerically computed values (see their Figure 8(a)). In their

table 3, they also list the results of computed w; in the

!-.M
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following Table 2, we compare their resultswithour

analytical formula (A-24b) side by side, the latter being

shown in parentheses. The column left blank is unavailable

from Sozon and Swithenbank. On the whole, our expression

appears to be satisfactorily close to the numerical results,as

long as the swirl Mach number,defined as Rri/A(0) by them,remains

less than 0.5 or so. Though not to be included here, if

X is not too close to unity, the amplitude of i, (A-23b)

is also in good agreement with their Figure 6.

A __
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Figure 1. Definition sketch.
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Figure 2.- Lower deck, middle deck and core.
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in the direction in the same direction
opposite to steady as steady swirl
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Figure 4(a) Frequency vs. swirl Mach number
- 1.1

solid lines: numerically computed values
chain lines: analytical results from

equation (A-8)1.... ... 6 .660%-
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Figure 5(a) Tangential streaming near the inner cylinder,
showing the reversal of streaming at threshold
swirl for the first radial mode. X = 2.0

p, m=l; temperature at outer cylinder wall,20;C,' r = 0.71; 'Y = 1.4 .

solid lines; inner wall temperature maintained
at its steady value.

broken lines; thermally insulated inner wall.
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Figure 6(a) Threshold swirl Mach number for the first
radial mode vs. radius ratio. m - 1.
Above the threshold, the direction of the
tangential streaming. is opposite to that
of steady swirl; below it, the direction
is the same.
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FIGURE CAPTIONS

Figure 1. Definition sketch.

Figure 2. Lower deck, middle deck and core.

Figure 3. "Family tree" of streaming.

Figure 4. (a) Frequency vs. swirl Mach number. X 1.1.

Figure 4. (b) X = 2.0.

Figure 4. (c) X = 5.0.

Figure 4. (d) X = 7.0.

Figure 5. (a) Tangential streaming near the inner
cylinder, showing the reversal of
streaming at threshold swirl for the
first radial mode.X = 2.0.

Figure 5. (b) X = 3.0.

Figure 5. (c) X = 5.0.

Figure 5. (d) X = 7.0.

Figure 6. (a) Threshold swirl Mach number for the first
radial mode vs. radius ratio. m = 1. Above
the threshold, the direction of the tan-
gential streaming is opposite to that of
steady swirl; below it, the direction is
the same.

Figure 6. (b) m = 2.

Figure 7. (a) Tangential streaming near the outer
cylinder.X = 2.0.

Figure 7. (b) A = 5.0.

Figure 7. (c) X = 7.0.

Figure 8. Metamorphosis of total d.c. swirl for a free
vortex.

Figure 9. Tangential streaming near the tube periphery,
showing that its direction is always the same
as the steady swirl. r/ (riA ex(r=r )) = 0.2;

X 2; K = 0; first radial mode; P = 0.71;
Y- 1.4; wall temperature is alwayE maintained
at its steady value, 200 C.
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Figure Captions

Page 2

Figure 10. Metamorphosis of total d.c. swirl for a
Rankine vortex.


